LOG#073. The G2 system.

The second paper I am going to discuss today is this one:


In Note on the natural system of units, Sudarshan, Boya and Rivera introduce a new kind of “fundamental system of units”, that we could call G2 system  or the Boya-Rivera-Sudarshan system (BRS system for short). After a summary of the Gamov-Ivanenko-Landau-Okun cube (GILO cube) and the Planck natural units, they make the following question:

Can we change the gravitational constant G_N for something else?

They ask this question due to the fact the G_N seems to be a little different from h, c. Indeed, many researchers in quantum gravity use to change G_N with the Planck length as fundamental unit! The G2 system proposal is based in some kind of two dimensional (2d) world. Sudarshan, Boya and Rivera search for a “new constant” G_2 such as G_2/r substitutes G_N/r^2 in the Newton’s gravitational law. \left[G_2\right]=L in this new “partial” fundamental system. Therefore, we have

    \[ F_N=G_2Mm/r\]

and the physical dimensions of time, length and mass are expressed in terms of G_2 as follows (we could use \hbar instead of h, that is not essential here as we do know from previous discussions) :

    \[ T=c^{-4}hG_2\]

    \[ L=c^{-3}hG_2\]

    \[ M=c^2/G_2\]

In fact, they remark that since G_2 derives from a 2+1 dimensional world and Einstein Field equations are generally “trivial” in 2+1 spacetime, G_2, surprisingly, is not related to gravitation at all! We are almost “free” to fix G_2 with some alternative procedure. As we wish to base the G2 system in well known physics, the election they do for G_2 is the trivial one ( however I am yet thinking about what we could obtain with some non-trivial alternative definition of lates G_2):

    \[ \boxed{G_2=\dfrac{c^2}{M_P}=G_N/L_P \approx 4.1\cdot 10^{24}MKS=4.1\cdot 10^{25}CGS}\]

and any other equivalent expression to it. Please, note that if we fix the Planck length to unit, we get G_N=G_2, so it is equivalent to speak about G_2 or G_N in a system of units where Planck length is set to the unit. However, the proposal is independent of this fact, since, as we said above, we could choose some other non-trivial definition for G_2, although I don’t know what kind of guide we could follow in those alternative and non-trivial definition.

The final remark I would like to make here is that, whatever we choose instead of G_N, it is ESSENTIAL to a quantum theory of gravity, provided it exists, it works and it is “clear” from its foundational principles.

See you in my next blog post!

View ratings
Rate this article
Liked it? Take a second to support amarashiki on Patreon!

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.