LOG#244. Cartan calculus.

I am going to review the powerful Cartan calculus of differential forms applied to differential geometry. In particular, I will derive the structure equations and the Bianchi identities. Yes!

Firstly, in a 2-dim manifold, we and introduce the Cartan 1-forms

(1)   \begin{align*} d\theta^1+\omega^1_{\;\;2}\wedge \theta^2=0\\ d\theta^2+\omega^2_{\;\;1}\wedge \theta^1=0 \end{align*}

The connection form reads

(2)   \begin{equation*} \omega=\begin{pmatrix} \omega^1_{\;\; 1} & \omega^1_{\;\; 2}\\ \omega^2_{\;\; 1} & \omega^2_{\;\; 2} \end{pmatrix} \end{equation*}

Now, we can introduce the so-called curvature k=\Omega^1_{\;\; 2}(e_1,e_2) and the curvature 2-form, since from d\omega^1_{\;\;2}=k\theta^1\wedge\theta^2, we will get

(3)   \begin{equation*} \Omega=\begin{pmatrix} \Omega^1_{\;\; 1} & \Omega^1_{\;\; 2}\\ \Omega^2_{\;\; 1} & \Omega^2_{\;\; 2}\end{pmatrix} \end{equation*}

The generalization to n-dimensional manifolds is quite straightforward. The torsion 1-forms \Theta are defined through the canonical 1-forms \theta via

(4)   \begin{equation*} \theta=\begin{pmatrix}\theta^1 \\ \vdots \\ \theta^n\end{pmatrix} \end{equation*}

such as

(5)   \begin{equation*} \Theta=\begin{pmatrix} \Theta^1 \\ \vdots \\ \Theta^n\end{pmatrix} \end{equation*}

With matrices \omega=\omega^i_{\;\; j} and \Omega^i_{\;\; j}, being antisymmetric n\times n, we can derive the structure equations:

(6)   \begin{equation*} \tcboxmath{\Theta=d\theta+\omega\wedge \theta} \end{equation*}

(7)   \begin{equation*} \tcboxmath{\Omega=d\omega+\omega\wedge\omega} \end{equation*}

Note that

(8)   \begin{equation*} \Theta^k=T^k_{ij}\theta^i\wedge\theta^j \end{equation*}

The connection forms satisfy

(9)   \begin{align*} \nabla_X e=e\omega(X)\\ \nabla e=e\omega \end{align*}

The gauging of the connection and curvature forms provide

(10)   \begin{align*} \overline{\omega}=a^{-1}\omega a+a^{-1}da\\ \overlin{\Omega}=a^{-1}\Omega a \end{align*}

since \overline{e}=ea, and e=\overline{e}a^{-1}, as matrices. Note, as well, the characteristic classes

(11)   \begin{equation*} \int_M e(M)=\int_M \mbox{Pf}\left(\dfrac{\Omega}{2\pi}\right)=\chi(M) \end{equation*}

is satisfied, with

(12)   \begin{equation*} \mbox{det}\left(I+\dfrac{i\Omega}{2\pi}\right)=1+c_1(E)+\cdots+c_k(E) \end{equation*}

Now, we also have the Bianchi identities

(13)   \begin{equation*} \tcboxmath{d\Theta=\Omega\wedge\theta-\omega\wedge\Theta} \end{equation*}

(14)   \begin{equation*} \tcboxmath{d\Omega=\Omega\wedge\omega-\omega\wedge\Omega} \end{equation*}

Check follows easily:

(15)   \begin{align*} d\theta=\Theta-\omega\wedge\theta\\ d\omega=\Omega-\omega\wedge\omega\\ d\Theta=\Omega\wedge\theta-\omega\wedge\Theta\\ d\Omega=\Omega\wedge\omega-\omega\wedge\Omega\\ d(\Omega^k)=\Omega^k\wedge\omega-\omega\wedge\Omega^k \end{align*}

From these equations:

    \[d\Theta=d(d\theta)+d\omega\wedge\theta-\omega\wedge d\theta\]


and then

    \[d\Theta=\Omega\wedge\omega-\omega\wedge\Theta\;\;\; Q.E.D.\]

sinde \omega\wedge\omega\wedge\theta=0. By the other hand, we also deduce the 2nd Bianchi identity

    \[d\Omega=d^2\omega+d\omega\wedge\omega-\omega\wedge d\omega\]

Note that d(d\omega)=d^2\omega=0. Then,

    \[d\Omega=d\omega\wedge\omega-\omega\wedge d\omega=(\Omega-\omega\wedge\omega)\wedge \omega-\omega\wedge(\Omega-\omega\wedge\omega)\]

and thus

    \[d\Omega=\Omega\wedge\omega-\omega\wedge\Omega\;\; Q.E.D.\]

Remember: d\theta gives the 1st structure equation, d\omega gives the 2nd structure equation, d\Theta gives the first Bianchi identity, and d\Omega provides the 2nd Bianchi identity.

View ratings
Rate this article
Liked it? Take a second to support amarashiki on Patreon!

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.