In supersymmetric LR models, inflation, baryogenesis (and/or leptogenesis) and neutrino oscillations can be closely related to each other. Baryosynthesis in GUTs is, in general, inconsistent with inflationary scenarios. The exponential expansion during the inflationary phase will wash out any baryon … Continue reading

# Category Archives: SM

There are some indirect constraints/bounds on neutrino masses provided by Cosmology. The most important is the one coming from the demand that the energy density of the neutrinos should not be too high, otherwise the Universe would collapse and it … Continue reading

The observed mass and mixing both in the neutrino and quark cases could be evidence for some interfamily hierarchy hinting that the lepton and quark sectors were, indeed, a result of the existence of a new quantum number related to … Continue reading

Models where the space-time is not 3+1 dimensional but higher dimensional (generally D=d+1=4+n dimensional, where n is the number of spacelike extra dimensions) are popular since the beginnings of the 20th century. The fundamental scale of gravity need not to … Continue reading

Supersymmetry (SUSY) is one of the most discussed ideas in theoretical physics. I am not discussed its details here (yet, in this blog). However, in this thread, some general features are worth to be told about it. SUSY model generally … Continue reading

A very natural way to generate the known neutrino masses is to minimally extend the SM including additional 2-spinors as RH neutrinos and at the same time extend the non-QCD electroweak SM gauge symmetry group to something like this: The … Continue reading

Mass terms Phenomenologically, lagrangian mass terms can be understood as terms describing “transitions” between right (R) and left (L) handed states in the electroweak sector. For a given minimal, Lorentz invariant set of 4 fields (), we have the components … Continue reading

The current Standard Model of elementary particles and interactions supposes the existence of 3 neutrino species or flavors. They are neutral, upper components of “doublets” with respect to the group, the weak interaction group after the electroweak symmetry breaking, and … Continue reading

This new post ignites a new thread. Subject: the Science of Neutrinos. Something I usually call Neutrinology. I am sure you will enjoy it, since I will keep it elementary (even if I discuss some more advanced topics at some … Continue reading

Happy New Year 2013 to everyone and everywhere! Let me apologize, first of all, by my absence… I have been busy, trying to find my path and way in my field, and I am busy yet, but finally I could … Continue reading