LOG#096. Group theory(XVI).

Given any physical system, we can perform certain “operations” or “transformations” with it. Some examples are well known: rotations, traslations, scale transformations, conformal transformations, Lorentz transformations,… The ultimate quest of physics is to find the most general “symmetry group” leaving … Continue reading

LOG#084. Group theory (IV).

Today we are going to speak about two broad and main topics: cyclic groups and some general features of finite groups (a few additional properties and  theorems). A cyclic group is, informally speaking, a group that can be generated by … Continue reading