LOG#145. Basic QFT in curved ST(V): the Hawking effect.

Dedicated to the warm memory of my hero as physicist S.W. Hawking. R.I.P. 1942-2018 Idea: Black Holes (BH) are “not” truly black. BH emit thermal radiation at the Hawking temperature and it is proportional to the surface gravity () of … Continue reading

LOG#144. Basic QFT in curved ST(IV): the Unruh effect.

What is the Unruh effect? Description: any accelerated observer in the traditional Minkovski state OBSERVE a thermal spectrum of particles. When we refer to the accelerated observer, usually it is called the Rindler observer in the literature as well. In … Continue reading

LOG#143. Basic QFT in curved ST(III).

We are now ready to go back to curved spacetime in the IN/OUT formalism! We have Indeed, where when we get particles from gravity! The particle density reads For instance, in a Friedmann-Robertson-Walker metric (FRW universe) we obtain where is … Continue reading

LOG#050. Why riemannium?

TABLE OF CONTENTS DEDICATORY 1. THE RIEMANN ZETA FUNCTION ζ(s) 2. THE RIEMANN HYPOTHESIS 3. THE HILBERT-POLYA CONJECTURE 4. RANDOM MATRIX THEORY 5. QUANTUM CHAOS AND RIEMANN DYNAMICS 6. THE SPECTRUM OF RIEMANNIUM 7. ζ(s) AND RENORMALIZATION 8. ζ(s) AND … Continue reading