LOG#097. Group theory(XVII).

The case of Poincaré symmetry There is a important symmetry group in (relativistic, quantum) Physics. This is the Poincaré group! What is the Poincaré group definition? There are some different equivalent definitions: i) The Poincaré group is the isometry group … Continue reading

LOG#095. Group theory(XV).

The topic today in this group theory thread is “sixtors and representations of the Lorentz group”. Consider the group of proper orthochronous Lorentz transformations and the transformation law of the electromagnetic tensor . The components of this antisymmetric tensor can … Continue reading

LOG#086. Group theory(VI).

We are going to be more explicit and to work out some simple examples/exercises about elementary finite and infinite groups in this post. Example 1. Let us define the finite group of three elements as where , and such as … Continue reading