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EDGES OF PHYSICS (I): GR AND SM
? 20th/currrent century physics coded into 2 big EFT (up to
E ∼ 100GeV − 1TeV and about 10−18m < λ < RObs) :

GR/Standard Gravity (SG)

Gµν =
8πG

c4 Tµν with LGR = LEH + LM

QFT gauge field theory/Standard Model (SM)

LSM = Lψ + Lgauge + LY + LHiggs

Lψ = iΨ /DΨ + h.c.

Lgauge = −1
4

FµνFµν

LY = YijφΨiΨj + h.c.

LHiggs = |Dµφ|2 − V(φ)
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EDGES OF PHYSICS (II): ISSUES/QUESTIONS

? This can NOT be the end of the story. A list:
1 Dark Matter and Dark Energy. What are they? Particles

and/or Modified Gravity?
2 The Cosmological Constant (dark energy?) problem.
3 Origin of mass (how to explain why the Yukawa couplings

and masses are those we observe?).
4 Black Hole physics: where does BH entropy come from?

Information paradox+spacetime singularities. . .
5 Quantum Mechanics and its foundations. Is it geometry?

Is it (really) fundamental or emergent?
6 Is spacetime itself fundamental or emergent?
7 Gravitational, strong and electroweak forces not unified.
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EDGES OF PHYSICS (III): BEYOND GR/SM
? Go beyond. QG and U. Main approaches BGR and BSM:

1 Superstrings/M-theory.
2 Loop Quantum Gravity.
3 Other approaches, ideas, and frameworks.

I CFT, GUT’s, NC geometry, twistors.
I Phenomenology of QG.
I Higher Spin Theories, Generalized UP, analogue models,

SME.
I World crystals, holography, gauge/gravity correspondence,

emergent spacetime, QIT “spacetime from entanglement”,
. . .

4 Deformations and extensions of SR, GR and QM. There are
nontrivial extensions of relativity and other relativities
(doubly/triply special relativity)!

This talk: The Extended Relativity in C-spaces “state of
art” and its own “beyond”
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ER (I): WHY?
Six good reasons to study Extended Relativity and ER in
C-spaces:

I Not too many people out there doing it! No competitors!
(This is a good one!)

I New ways to enlarge relativity/gauge symmetries.
String theory/M-theory and other main approaches still
lack a unifying principle (cf. equivalence principle,
Lorentz invariance, diff. invariance,. . . )

I Derive relationships with other known major/minor
approaches

I Alternative tool to compactification/extra D/unification
I Clifford algebras seem to be important too in QIT
I Create new predictions to be tested in experiments and

explore new paths towards unification (Not bad!)
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ER(II): POLYVECTORS AND ER RISE
Castro 98/99, Pezzaglia 99, C. Castro/M. Pavšič 2005: Extended
relativity theory in C-spaces generalizes of the notion of the
interval in Minkowski space to a manifold we call Clifford
space (C-space) and naturally requires extended objects.
Matej Pavšič (IARD 2002): polydimensional relativity+C-space
as the “arena” of physics.

What is a polyvector?

The Clifford valued polyvector X = XMEM is defined as:

X = σ1 + xµγµ + xµνγµ ∧ γν + ...+ xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD

Interpretation: a “point” in C-space has coordinates XM and
basis EM. The series ends at a finite grade depending on the
dimension D. A Clifford algebra Cl(r, q) with r + q = D has 2D

basis elements. Clifford algebra/geometric calculus use the
product ab = a · b + a ∧ b.
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Matej Pavšič (IARD 2002): polydimensional relativity+C-space
as the “arena” of physics.

What is a polyvector?
The Clifford valued polyvector X = XMEM is defined as:

X = σ1 + xµγµ + xµνγµ ∧ γν + ...+ xµ1µ2....µDγµ1 ∧ γµ2 .... ∧ γµD

Interpretation: a “point” in C-space has coordinates XM and
basis EM. The series ends at a finite grade depending on the
dimension D. A Clifford algebra Cl(r, q) with r + q = D has 2D

basis elements. Clifford algebra/geometric calculus use the
product ab = a · b + a ∧ b.



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

FROM MINKOWSKI TO CLIFFORD SPACETIME (I)
I For simplicity, the gammas γµ correspond to a Clifford

algebra associated with a flat spacetime
{γµ, γν} = 2ηµν .

But...We can use the construction with
curved spacetimes as well! with metric

{γµ, γν} = 2gµν

I Einstein introduced the speed of light as a universal
absolute invariant in order to unite space with time (to
match units) in the Minkwoski space interval:

ds2 = c2dt2 + dxidxi

I The C-space interval
The C-space interval generalizes Minkovskian spacetime:

dX2 = dσ2 + dxµdxµ + dxµνdxµν + ...
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FROM MINKOWSKI TO CLIFFORD SPACETIME (II)
Alternative procedure:

1. Take the differential dX of X.

Compute the scalar
< dX†dX >0≡ dX† ∗ dX ≡ |dX|2 and obtain the C-space
extension of the particles proper time in Minkwoski space

2. The symbol X† denotes the reversion operation and
involves reversing the order of all the basis γµ elements in
the expansion of X.It is the analog of the transpose
(Hermitian) conjugation

3. The C-space metric associated with a polyparticle motion
is then :

|dX|2 = GMN dXMdXN (1)

where GMN = E†M ∗ EN is the C-space metric.

|dX|2 = dσ2+L−2dxµdxµ+L−4dxµνdxµν+...+L−2Ddxµ1...µD dxµ1...µD

(2)



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

FROM MINKOWSKI TO CLIFFORD SPACETIME (II)
Alternative procedure:

1. Take the differential dX of X. Compute the scalar
< dX†dX >0≡ dX† ∗ dX ≡ |dX|2 and obtain the C-space
extension of the particles proper time in Minkwoski space

2. The symbol X† denotes the reversion operation and
involves reversing the order of all the basis γµ elements in
the expansion of X.It is the analog of the transpose
(Hermitian) conjugation

3. The C-space metric associated with a polyparticle motion
is then :

|dX|2 = GMN dXMdXN (1)

where GMN = E†M ∗ EN is the C-space metric.

|dX|2 = dσ2+L−2dxµdxµ+L−4dxµνdxµν+...+L−2Ddxµ1...µD dxµ1...µD

(2)



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

FROM MINKOWSKI TO CLIFFORD SPACETIME (II)
Alternative procedure:

1. Take the differential dX of X. Compute the scalar
< dX†dX >0≡ dX† ∗ dX ≡ |dX|2 and obtain the C-space
extension of the particles proper time in Minkwoski space

2. The symbol X† denotes the reversion operation and
involves reversing the order of all the basis γµ elements in
the expansion of X.It is the analog of the transpose
(Hermitian) conjugation

3. The C-space metric associated with a polyparticle motion
is then :

|dX|2 = GMN dXMdXN (1)

where GMN = E†M ∗ EN is the C-space metric.

|dX|2 = dσ2+L−2dxµdxµ+L−4dxµνdxµν+...+L−2Ddxµ1...µD dxµ1...µD

(2)



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

FROM MINKOWSKI TO CLIFFORD SPACETIME (III)

I Neccesary introduction: Planck scale L. It is length
parameter is needed in order to tie objects of different
dimensionality together: 0-loops, 1-loops,..., p-loops.

I This procedure can be carried to all closed p-branes
(p-loops) where the values of p are p = 0, 1, 2, 3, .... The
p = 0 value represents the center of mass and the
coordinates xµν , xµνρ...
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MOTION IN C-SPACE(I)

Line element and polymomentum

dXAdXA = dσ2 +

(
dx0

L

)2

−
(

dx1

L

)2

−
(

dx01

L2

)2

....+

(
dx12

L2

)2

−

(
dx123

L3

)2

−
(

dx0123

L4

)2

+ ... = 0

I Vanishing of ẊBẊB is equivalent to vanishing of the above
C-space line element and by “...” we mean the terms with
the remaining components such as x2, x01, x23,..., x012, etc.

I The C-space metric is GMN = E†M ∗ EN and if the dimension
of spacetime is 4, then x0123 is the highest grade coordinate.
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MOTION IN C-SPACE(II)
Polyvelocity

V2 = −
(

L
dσ
dt

)2

+

(
dx1

dt

)2

+

(
dx01

L2

)2

...

−
(

1
L

dx12

dt

)2

+

(
1
L2

dx123

dt

)2

+

(
1
L3

dx0123

dt

)2

− ...

We find that
I The maximum speed V2 = c2 in C-space depends on extra

r-vector quantities.
I The maximum speed squared V2 contains components of

the 1-vector velocity dx1/dt, but also the multivector
dx12/dt, dx123/dt, . . . The following special cases in C-space
are different from zero, are of particular interest:
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MOTION IN C-SPACE(III)

Maximum 1-vector speed

dx1

dt
= c = 3.0× 108m/s

Maximum 3-vector speed

dx123

dt
= L2c = 7.7× 10−62m3/s

And we have as well...
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MOTION IN C-SPACE(IV)

Maximum 3-vector diameter speed and Maximum
4-vector speed

d 3
√

x123

dt
= 4.3× 10−21m/s

dx0123

dt
= L3c = 1.2× 10−96m4/s

Remark: in addition to this, you can also get maximal limits to
n order derivatives given by

Max
(

dn+1x
dtn+1

)
≤ c

( c
L

)n

Remark (II): hint of a high derivative extension of relativity?
Have you ever heard about tachyons and epitachyons?
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ER: MAXWELL ELECTRODYNAMICS(I)
C-space gauge field theory electromagnetism

1 C-space electrodynamics generalize Maxwell’s theory:

F = dA, dF = 0

2 Abelian C-space electrodynamics is based on the
polyvector field

A = ANEN = φ1 + Aµγ
µ + Aµνγ

µ ∧ γν + ... = (φ,Aµ,Aµν , ...)

3 Defining the C-space operator (M,N = 1, 2, . . . , 2D)

d = EM∂M = 1∂σ + γµ∂xµ + γµ ∧ γν∂xµν + ...

4 The generalized field strength in C-space is:

F = dA = EM∂M(ENAN) = EMEN∂MAN =

1
2

{
EM,EN

}
∂MAN +

1
2

[
EM,EN

]
∂MAN =

1
2

F(MN)

{
EM,EN

}
+

1
2

F[MN]

[
EM,EN

]
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C-SPACE MAXWELL ELECTRODYNAMICS(II)
We did a decomposition in symmetric and antisymmetric parts
of the strength field in C-space with the aid of geometric
product

F(MN) =
1
2

(∂MAN + ∂NAM) F[MN] =
1
2

(∂MAN − ∂NAM)

and now...

C-space Maxwell-like action

I[A] =

∫
[DX]F[MN]F[MN]

with measure

[DX] ≡ (dσ)(dx0dx1...)(dx01dx02...)....(dx012...D)
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C-SPACE MAXWELL ELECTRODYNAMICS(III)

The C-space Maxwell action is invariant under...

C-space gauge transformations

A′M = AM + ∂MΛ

and the minimal matter-field coupling interacting term after
absorbing constants is similar to the coupling of p-branes to
antisymmetric fields!∫

AMdXM =

∫
[DX]JMAM
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C-SPACE MAXWELL ELECTRODYNAMICS(IV):
EQUATIONS AND GENERALIZATIONS

C-space Maxwell equations

∂MF[MN] = JN ∂N∂MF[MN] = 0 = ∂NJN = 0

C-space generalized actions and equations
The C-space Maxwell action is only a piece of the more general
C-space action:

I[A] =

∫
[DX] F† ∗ F =

∫
[DX] < F†F >scalar

and the non abelian equations should be written as

F = DA = (dA + A • A) EM • EN = EMEN − (−1)sMsN ENEM



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

C-SPACE MAXWELL ELECTRODYNAMICS(IV):
EQUATIONS AND GENERALIZATIONS

C-space Maxwell equations

∂MF[MN] = JN ∂N∂MF[MN] = 0 = ∂NJN = 0

C-space generalized actions and equations
The C-space Maxwell action is only a piece of the more general
C-space action:

I[A] =

∫
[DX] F† ∗ F =

∫
[DX] < F†F >scalar

and the non abelian equations should be written as

F = DA = (dA + A • A) EM • EN = EMEN − (−1)sMsN ENEM



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

C-SPACE MAXWELL ELECTRODYNAMICS(IV):
EQUATIONS AND GENERALIZATIONS

C-space Maxwell equations

∂MF[MN] = JN ∂N∂MF[MN] = 0 = ∂NJN = 0

C-space generalized actions and equations
The C-space Maxwell action is only a piece of the more general
C-space action:

I[A] =

∫
[DX] F† ∗ F =

∫
[DX] < F†F >scalar

and the non abelian equations should be written as

F = DA = (dA + A • A) EM • EN = EMEN − (−1)sMsN ENEM



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

C-SPACE MAXWELL ELECTRODYNAMICS(IV):
EQUATIONS AND GENERALIZATIONS

C-space Maxwell equations

∂MF[MN] = JN ∂N∂MF[MN] = 0 = ∂NJN = 0

C-space generalized actions and equations
The C-space Maxwell action is only a piece of the more general
C-space action:

I[A] =

∫
[DX] F† ∗ F =

∫
[DX] < F†F >scalar

and the non abelian equations should be written as

F = DA = (dA + A • A) EM • EN = EMEN − (−1)sMsN ENEM



MOTIVATIONS BITS OF EXTENDED RELATIVITY ER: LINKS TO QG AND U BEYOND ER CONCLUSIONS

GENERALIZED POLYVECTOR VALUED GAUGE FIELDS

X = ϕ 1 + xµ γµ + xµ1µ2 γ
µ1 ∧γµ2 + xµ1µ2µ3 γ

µ1 ∧γµ2 ∧γµ3 + ...

E.g.: Polyvector valued gauge field in Cl (5,C)
AM(X) = AI

M(X) ΓI is spanned by 16 + 16 generators. The
expansion of the poly-vector AI

M is also of the form

AI
M = ΦI 1 + AI

µ γ
µ + AI

µ1µ2
γµ1∧γµ2 + AI

µ1µ2µ3
γµ1∧γµ2∧γµ3 + ...

Remember: In order to match units, a length scale needs to be
introduced in the expasion. The Clifford-algebra-valued gauge
field AI

µ(xµ)ΓI in ordinary spacetime is naturally embedded
into a far richer object AI

M(X) .The scalar ΦI admits the 25 = 32
components φ, φi, φ[ij], φ[ijk], φ[ijkl], φ[ijklm] of Cl(5,C) space!
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C-SPACE KLEIN-GORDON AND DIRAC WAVE

EQUATIONS

Polymomentum correspondence principle

PA → −i
∂

∂XA = −i
(
∂

∂σ
,
∂

∂xµ
,
∂

∂xµν
, ...

)
Ψ(xµ)→ Ψ(xA)

C-space Klein-Gordon wave equation(
∂2

∂σ2 +
∂2

∂xµ∂xµ
+

∂2

∂xµν∂xµν
+ ...+ M2

)
Φ = 0
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C-SPACE KLEIN-GORDON AND DIRAC WAVE

EQUATION (II)

C-space Dirac wave equation

−i
(
∂

∂σ
+ γµ

∂

∂xµ
+ γµ ∧ γν ∂

∂xµν
+ ...

)
Ψ = MΨ

Note we used natural units in which ~ = 1, c = 1
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1ST LINK: MAXIMAL

ACCELERATION/TENSION/FORCE/POWER

I Caianiello’s QM geometry as phase-spacetime includes

aC = 2
mc3

~
= 2

Ec
~

I Born’s reciprocal relativity.
I Maximal Force implies a maximal power (e.g. Schiller

2006). The recent LIGO detection of GW is only about 10−2

the maximal power. Hope: we aspire to test maximal
power (force?) with GW radiation in the future!

I Maximal acceleration, via EP, implies a maximal, critical,
strong gravitational field. The SM in strong fields
(Schwinger effect) remains as challenge!
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2ND LINK: EMERGENT SPACETIME AND COMPLEXITY

I Role of “emergence”: emergent spacetime from
entanglement? Is quantum entanglement the key?

I Complexity and gravity interplays. Indeed, Susskind et al.
recently related complexity with action and they got the
rate:

dComplexity
dt

≤ 2M
π~

It suggests a link with maximal acceleration as well after
rescaling with π, c3!
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3RD LINK: OTHER RELATIVITIES (OR)
Past works on (forgotten) OR. A simple (non-exhaustive) list
includes (choose one or many!):

I Born seminal work on reciprocal relativity.
I Fantappie’s final relativity and Arcidiacono’s projective

relativity (dS like).
I Kalitzin’s multitemporal relativity (1975 book).
I Barashenkov’s 6D relavitivy.
I Cole’s 6D spacetime relativity and cellular spacetime.
I Bogoslovski’s anisotropic relativity (Very Special

Relativity).
I De Sitter relativity (doubly/triply SR).
I C. Nassif’s minimal velocity relativity.
I Gogberashvili’s octonionic relativity.
I . . . Are all wrong or some of their ideas are right indeed?
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BEYOND ER: HINTS OF A NEW ER

Everything so far sounds good, what is the problem with ER?
A critical view:

I No clear principle(s) but points into it(them) in a sense:
why is fundamental scale L = Lp? What about a dual
extension with MAXIMAL/dS length L = LΛ?

I Transitions between different signatures not understood
yet.

I The Clifford group choice: we can not choose a reason of
why to pick one instead any other.

I Similar issue to theories of strings/branes: no hints of the
emergence of multiple energy or mass scales.

BUT. . . ER gives hints and extra suggestions!
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HINTS OF A NEW ER (II)

Classical Mechanics is based on the Poincare-Cartan two-form

ω2 = dx ∧ dp

There p = ẋ. Quantum mechanics is secretly a subtle
modification of this. By the other hand, the so-called
Born-reciprocal relativity is based on the ”phase-space”-like
metric

ds2 = dx2 − c2dt2 + Adp2 − BdE2

and its full space-time+phase-space extension:

ds2 = dX2 + dP2 = dxµdxµ +
1
λ2 dpνdpν
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HINTS OF A NEW ER (III)
Extension of Born’s reciprocal relativity in C-spaces based on
higher accelerations IS an interesting open problem. E.g.: take
ds2 = dx2 + dp2 + df 2. We have an invariant and likely hidden
Nambu dynamics

ω3 = dX ∧ dP ∧ dF

Question: What is the symmetry group or invariance of the
above (n+1)-form and whose intersection with the
SO(D(n + 1)) group gives the higher order metaplectic group?

ωn+1 = dx ∧ dp ∧ dṗ ∧ · · · ∧ dp(n−1)

where we include up to (n− 1) derivatives or equivalently

ωn+1 = dx ∧ dẋ ∧ dẍ ∧ · · · ∧ dx(n)

A unified framework for higher derivative theories?
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HINTS OF A NEW ER (IV)

“New” relativities and some extensions of relativity do exist
and they include several ingredients and hypothesis to be
tested. Furthermore, I also propose:

Ultimate Relativity (UR) conjecture
There is a extended relativity with min/max values of
any n-th derivative of coordinates (also for polyvector
derivatives in C-spaces).

UR: german word, “original”. Also, in Geology, “the first
(prime) supercontinent”.
Remark: This is not really “completely new” but a reboot and
revival of an older idea, cf. “final relativity” (Fantappie,
Arcidiacono) and more recently Wilczek’s “total relativity”.
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DM AS MINIMAL ACCELERATION DYNAMICS?

Suppose there is a minimal acceleration a0 (minimal force F0).
Then:

v2

R
= G

M
R2 + a0

and from this, by simple squaring, you obtain

v4 = G2M2R−2 + a2
0R2 + 2GMa0

In the limit G2, a2
0 << 1, you get the phenomenological law

v4 = 2GMa0

Idea: DM, even if real, could be hinting a minimal acceleration
(MOND-like) dynamics.
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DM+DE AS MINIMAL ACCELERATION DYNAMICS +
MAXIMAL LENGTH?

Suppose (with c = 1) there is a minimal acceleration a0
(minimal force F0) and a cosmological constant (de Sitter
radius):

v2

R
= G

M
R2 + a0 + ΛR

and from this, by simple squaring, you obtain

v4 = G2M2R−2 + a2
0R2 + 2GMa0 + 2GMRΛ + 2a0ΛR3 + Λ2R4

In the limit G2, a2
0,Λ << 1, you get the phenomenological law

v4 = 2GMa0

Idea: DM, DE, even if real, could be hinting a (MOND-like)
minimal acceleration +Maximal length dynamics. Does MOND
fail (when it does) because we ignore extra terms?
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SUMMARY AND OVERVIEW

1 There are multiple advantages of recurring to C-spaces.
Not covered here: gravity with torsion, YM fields and
nonabelian EM with CS terms,. . .

2 Every physical quantity is a polyvector! Polydimensional
and signature relativity.

3 C-space dynamics (motion and electrodynamics) is richer
than ordinary Minkovskian dynamics.

4 Field equations (KG, Dirac,. . . ) in C-space.
5 A maximal force ( accelaration) principle and phase space

duality are present in the theory.
6 Is Max. acceleration related to max. complexity?
7 Born’s reciprocal relativity + Nambu dynamics and likely

Finsler-like higher order geometries (sometimes referred as
Kawaguchi geometry) seems to be relevant there.

8 A higher order M(inimal)-maximal n-order high derivative
theory? UR conjecture.
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HINTS OF (BEYOND) ER IN FUTURE PAST DAYS(I)

ER and beyond ER are ideas something anticipated and have
visited us cyclically.
A notable recent example:

One from IARD, not long, long ago:
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ABOUT CAIANIELLO AND THE MAXIMAL

ACCELERATION PRINCIPLE

The cool and important remark:
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BEYOND ER: A HIGHER ORDER M(IN-MAX)-THEORY

OF ER?

Question: What about a generalized relativistic dynamics for
E = Γmc2, using “duality” and “symmetry”, such any
derivative appears on equal footing? Say

Γ(X2,V2,A2, . . .) =

√
1−

l20
X2

√
1−

c2
0

V2

√
1−

a2
0

A2 · · ·√
1− X2

L2
Λ

√
1− V2

C2

√
1− A2

A2
m
· · ·

Can we test it? Is it crazy enough to be true or useful for high
derivative theories? Note: Caianiello’s epitachyons are entities
with A > Am.
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