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Abstract

We provide an introduction to multitemporal relativity and other multitemporal unconventional
relativitistic theories.

1 Introduction

Multitemporal Special Relativity was introduced by N. S. Kalitzin, via the line element

ds® = da? + dad 4 dad — Adt? — 3dts — ... — 2 _5dt? (1)
or
3 n—3
dsa(kal) = Z dz; — Z c?t? (2)
i=1 j=1
Usually 3-+1 SR can be recovered in the case co = c3 =+ = ¢,—3 = 0 and ¢; = ¢. We know define
ds®  [dz;\?  [dag\?  [dxs)? dts\* [ cn_sdz,_3\?
Cyp o 4 ()T (AT ()T (edi\T (s 3)
dtl dtq dtq dtq dt1 dty

Also, we can rewrite this as follows

_ ﬁ B ds? B dzq 2 n dzo
A& ad?  \ddh cAdty
and

v ds? _q dzq 2+
c% B c%dt% a c%dtl

2 T dxg 2 1 CthQ 2 _ Cn_gd:lin_g 2 (4)
C%dtl Cldtl Cldtl

=2
and thus )
Vi 1
T 7
() - "
c
v = fl (8)
where .
I'= 9)

Using [9) we can obtain several limits:

e c¢; = 0Vj. Space theory, newtonian relativity with no time coordinates.
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e c1 = ¢, ¢; =0Vj # 1. Usual 3+1d special relativity.

e ¢j = cVj. We get time isotropic multitemporal relativity with maximal speed (c¢; = ¢)

=+vn—3c (10)

In general, for s # k-time coordinate, we have a group velocity

ds crdty 2
Vi=—= |1 3 11
dt, > <csdt5> ¢ (11)
k#s
It can be shown that
upui = —c25, (12)

with uj, = dsy,/drs = I'dsy,/dts. We can always define
cyty = L4, C5t5 = L5, NN ,Cntn = Ln (13)

and impose that extra time-like timensions are so tiny that can not be seen or conflict with causality.
A different issue is the quantum stability of extra time-like dimensions.
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Multitemporal Lorentz transformatios are

)

= \/1i7w2 <x +wl, <Ccll;‘)> (17)

2 Reformulation and new notation

and the inverse

I will be using a new multitemporal notation from now. Let it be the multitemporal spacetime vector

X = (z,y, 2, caty, c5ts, ... ,cNEN) = (F, c_i‘) (18)
X2 =82 =l F R4 F At — -y = 2P (19)
and

ds? = —da® — dy* — d2* + dt5 + - - - + cAdty (20)

o 2 2 2 2

" dt dx dy dz
ds? = c2di2 [ 1 R 21
y €4t < + = <C4dt4 €4t cydty + cqdty + cadty (21)
Defining
Cll‘i

;= 22
Vi = (22)
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2 _ 23,2 S (cadte\? 0 2,0 1
dS = C4dt4 1 + Z C4dt4 — g = C4dt4ﬁ (23)
a=>

Let us write

daci
U= i=1,...,n (24)
T
up = L= p=1,2,3 (25)
C4
ug = I (26)
,C5dt5
= T 27
s ZC4dt4 ( )
(28)
cpdty,
= T 29
tn ! C4dt4 ( )
=1 (30)

and the group velocity in multitemporal relativity reads

"L cadta )
1{3:034-2 < iit4a> (31)
a=>5
Now, as before, if dty = --- = dt,, = dt and ¢4 = -+ = ¢, = ¢, the isotropy of time-like coordinates
provide
9 "/ cdt, 2
Vg = Vinae = 4| 1 + Z 7 =+v/n— 3¢ (32)
a=>5 4
with 1
= (33)

3 Multitemporal length contraction

In the multitemporal theory of relativity (MTHOR), the contraction length is generalized to the
following formula

- <C5dt5>2+m+ <cndtn>2 B Ué
L=LoV/1—w? =L cadia) cadta) < (34)
C5dt5 Cndtn
+ <C4dt4) et <C4dt4>
n T\ 2 2
b (ccadcit) -z
a=>5 4004 €4

7\ 2
14 “ Cadt
C4dt4
a=>5

or equivalently

L:Lo\/l—w2:L0




4 Multitemporal time dilation

In MTHOR, the time dilation can be generalized from unitemporal relativity into the next formula

n - 2
Cadte,
1
1 * Z < cadty >
Aty = A |1+ > -1 (36)

N
Cadte, Codta v
1 E 1 E —
+ < cydty ) + = < cqdty ) ci

5 Multitemporal addition of velocities

In MTHOR, the relativistic addition of velocities is more complex than the one in unitemporal rela-
tivity. It reads

1 (6] e
T2 zar
V= o (37
1 czdty, dt,
cadt!diy / 1
V1-—w?+ 5n4 42 (1—\/1—u12>—|-M ”

c2di cf 2 dt?
1+ZZT¥§: 1+Zu

o=5 C4dt4

Other consequences of multitemporal theories:

e Energy becomes a vector, not an scalar, quantity.

» Crystalline relativity or quasicrystalline relativity (due to discrete time vectors).
e Further deformation of dispersion relation between energy and momentum.

e Generalized Maxwell equations and Einstein Field Equations.

e Object invisibility from certain spacetime points.

6 Multispace gravity

In any Dd (D = d + 1) Universe (spacetime), the gravitational force, the gravitational field, the
potential energy and the potential read

Mm Mm M M
Fn =Gpp = Gar g1 9= Gppp = Gavi 1 (38)
T T r T
Mm Mm oT((D — 1)/2)M T (d/2)M
Ug=Gp /D3~ Gar rd—2 Vy=Gp T(D-3)/2,D-3 d+17r(d—2)/2(d — 9)pd—2 (39)

Dilution of gravity: Gn(4d) = Gp/Vp. g3, (4d) = g%MdR*d , and Mp = \/hc/G ~ 107%g,
h 2
with My = - A/3 ~ 107%g. Moreover, GhA/c? ~ 107121 My = %,/3/A ~ 10%¢g, with
s[h2\/A/3
G

Gravity can be seen as an entropic force (Verlinde). Hypothesis for D = d + 1 hyperdimensional
Newton gravity:

My, = 10~?%g. You get My /My, ~ 10121,



27’[’d/2Rd_1
A Ty

A
e« N = A(z)/Lgfl, E =mc® = NkgT/2, AS = 27T]€Bmch L

Then:

where

Hyperdimensional gravitational Newton constant

d
2l =d/2T <2> 3Ll

h

37d—1
Gaq= = oxl=d/2p (d) Ly
2

bg = —QuGaM; ¢ = QuK4Q = Q/eo(d) ; Qg =21%?/T(d/2)

7 Multitemporal gravity

Gravitational theory can be made multitemporal as well. In the case of newtonian gravity, its mul-
titemporal generalization (N = n 4+ 1 + d, N is the number of total dimensions of spacetime in
multitime)

F = G cos® 977%11%7;’&2 (40)
where
cosl = 7y - 7iy (41)

is the angle between the time vectors of the n-dimensional time manifold. Note that the effective

gravitational constant
Gesp = Geos?0 >0 (42)

and for § = 7/2, Gcrs = 0. So, gravity can be absent from some multitemporal submanifolds.

8 Multitemporal mechanics(I)

d2
Usual 1T newtonian physics: F' = ma = mdit) = md—tg = —VU(r), assuming conservative forces only.
Let W = Fijdz' the work form, in a ND manifold V ¢ RY, with submanifold nd M c R* ¢ RV,
I
y! = yl(z), w = frdy’ implies dy’ = gyidxi, and also
x
i ayI
W = Fi(z)dx' — Fr = fr(y(z)) O
Single time manifold approach
dyJ d2yJ
— e s O
fr=mép—- =mir—s
dy[ ayJ d2yI 8y‘]
F,=mirj—— =mlrj——=—
ML g Bt — O g2 By




9 Multitemporal mechanics(II)

Going multitemporal with timelike coordinates (t) =t* a=1,---,m

s 82 J
= mdr 6
fr=mdry 9t ot8
0%yl oy’
_ af
fi = moL10™ 5 508 B
with anti-trace F; = F? given by the tensor 1-form
0%yl oy’
o __ a3
Fia = molis0™ 515588 oo

1 . 1 oy’ oy’
T=E= §m5]JnyJ T= 551J5a’887§18722g

10 Multitemporal mechanics(I1II)

Single time Euler-Lagrange 1st order EOM

oL d [OL
5S:O—>E(L):8xi—dt(aﬂ>:

11 Multitemporal Hamilton-Jacobi

The multitemporal Hamilton-Jacobi can be written in Kalitzian relativity as follows

625 Z %8

8752 —moci =0 (43)




12 Multitemporal mechanics(IV)

Single time Hamilton EOM

. OL .
Define 1T hamiltonian as H = xlﬁ — L, and p; = 0L/0i", then
55

,i_dazi_aH . dpi _8H
Cdt Op; LT ox’

T
Multi-time Hamilton EOM

oL |
Dyt L, and p* = 0L/0Dyx*, then

Define nT hamiltonian as H = D, z*

or' _oH o 5 0H
ot 9p¢ ot Yozt

13 Towards multitemporal multivectors and branes

Point particles have being generalized into objects we call branes (or p-branes). The electromagnetic
forms coupling to p-branes are given by

A=A,dx" (44)
Ay = By, datt A dat? (45)
Az = Cpypops datt A daxh? A dat' (46)
: (47)
Ap = Ay, datt N - N dat® (48)
The metric tensor for p-branes could suggestively be related to extended metrics
ds® = do? (49)
ds® = gy, ppdot @ dxh? (50)
ds® = Ry popsdatt @ dot? @ dats (51)
ds* = Ky popspa do™' @ do'? @ dat*s @ dats (52)
(53)
dz™ = gy datt @ - @ dahy (54)
In the so-called Clifford spaces, we have a nice expansion for multivector metrics
ds* = gapdXdXP = do® + dx,dat + - - - + dzyy,..pp, datHD (55)

14 Anisotropic Relativity

Finslerian relativity in anisotropic relativity (AR) has been studied by several authors. 141 AR
Lorent-type transformations are

, 1_5 b/2
. —(m) Az — Bt) (56)
_(1=8\"
= (m) At - Bt) (57)



15 Maximal acceleration and beyond

Maximal acceleration can be added as hypothesis in a finsler-like geometry ds? = Guv (0, &)dxtdz .
And a generalized gamma factor arises when g(Z, %) < a%VI:

1 1
\/ —a?/d?, V1—v?/e?

A natural higher order (maximal, lenght, maximal velocity, maximal acceleration, maximal jerk,
maximal snap, maximal pop,..) gamma should be like this

1 1 1 1

\/17l2/L?X \/1_”2/02 \/17a2/a%4 \/1_j2/j72rL

I'(v,a) = (58)

I'(X,V,A,...,0"X) = (59)

or

- 1
I'(X,0X,...,0"X) =
z’l_!) V1 @X)2/a2,

16 Ultrareferential Minimal Velocity Relativity

(60)

Claudio Nassif has built a modified relativity with maximal AND minimal velocity due to the quantum
realm and some ultrareferential. The modified gamma factor is now

vy = YLV # (61)

By the same arguments of the previous section, one could generalize this stuff to include maximal and
minimal 0;.X, such as

\J1— L2 /2 2 272 _
T(z,X,v,V,a,A,...,0x,0;X) Vi- VOQ/”Q Vi-Aje? V1 : - (62)
\/1—X2/L2 VL=V i azya, \/1—J /Jm

n o J1— Xi2)0%
- (63)
i=0 \/ 1- aEX/xz?m

17 Split octonion special relativity

or

I'(X,0X,...,0"X) =

Merab Gogberashvili introduced the split octonion relativity with invariant

s=ct+x"Jy, + XN +chwl, n=1,2,3,...,J°=1*=1,j2=—1 (64)
and
st =s=ct—a"J, — E\"j, — chwl, n = 1,2,3,...,J3 =1’ = 1,j,21 =-1 (65)
such as
§2 =557 = 2t — xpa™ + PN — ARAW? (66)
and gamma factor
2 d\" dAy, dw\?®  dvVs?
vl 1-2 (1R —(rE2) = Vst (67)
2 Ox™ dx,y, dt cdt
and where the pseudonorm is bound to the constraints
v <P (68)
dx™
— >h 69
T 2 (69)
dt
— >h 70
0 (70)
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de Sitter relativity

dS relativity embeds SR into a 5d space-time. The metric reads:

—napX4Xp = L3

The momentum reads off

1 1
MoV Q2 wo v %% kP LY
JuvT T Nuv <p p QLZSP =+ 16[@5

where the normal and conformal momentum are

and the modified dispersion relationship in de Sitter relativity can be rewritten as follows

2 2
€ 1 EpE - 1 €
L2 _p?=m23 + <p i — 7k —mmc® — (k — k2 —m202>>

&
P = (f,p> p° = pupt = m?c?

ot — (%’“ E) k2 = ko kP = T2

2 2 2 2 2
c 2Lds c 8Lds c

In dS SR we can derive the following gamma factor with R = Lgg:

19

_ Ny xta il 1 L o (miatdd)?
I 1 _ \/<1 — ZJR2 > (1 — Mij 2 + ﬁ 2757]@'1”1‘3 — t277ijZElIL‘J + ZJT

Uncommon relativities

There are more uncommon relativities out there:

1.

Zihua Weng octonionic and sedenionic relativities.

Nottale’s scale relativity.

3d-time SR by Barashenkov.

3d-time SR by E.A.B. Cole.

Multitemporal dS relativity by G. Arcidiacono.

Extended tachyonic relativity by E. Recami, Sudarshan, Pavsic and others.

Projective 5d SR by Kerner.

)

(75)
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