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Abstract

It is shown how the exact Nonperturbative Renormalization Group flow of the running
Newtonian coupling G(r) in Quantum Einstein Gravity is consistent with the existence
of an ultra-violet cutoff R(r = 0) = 2GNMo in the most general Schwarzschild solutions.
After setting gtt = 1− 2GNMo/R(r) = 1− 2G(r)M(r)/r, and due to the condition G(r =
0) = 0 and M(r = 0) ∼ 1/2GNMo, we prove why there is no horizon, since gtt(r = 0) = 0,
and there is a delta function scalar curvature singularity at r = 0. Similar results follow in
generalized Anti de Sitter-Schwarzschild metrics with a running cosmological parameter
Λ(r) and Newtonian coupling G(r). The ultra-violet cutoff in this latter case is no longer
given by 2GNMo, but instead is given by a real-valued positive root R∗ of a cubic equation
associated with the condition gtt(R(r = 0)) = gtt(R∗) = 0. A running Newtonian coupling
G(r) can also be accommodated naturally in a Jordan-Brans-Dicke scalar-tensor theory
of Gravity via a trivial conformal transformation of the Schwarzschild metric. However,
the running Newtonian coupling G(r) = (16πΦ2)−1 corresponding to the scalar field
Φ does not satisfy the asymptotic freedom condition G(r = 0) = 0 associated with
the ultra-violet non-Gaussian fixed point of Nonperturbative Quantum Einstein Gravity.
Nevertheless, our results exhibit an interesting ultra-violet/infrared duality behaviour of
G(r) that warrants further investigation. Some final remarks are added pertaining naked
singularities in higher derivative gravity, Finsler geometry, metrics in phase spaces and the
connection between an ultra-violet cutoff in Noncommutative spacetimes and the general
Schwarzschild solutions.
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1 Renormalization Group Flow and Schwarzschild

solution

1.1 Introduction

We begin by writing down the class of static spherically symmetric (SSS) solutions of
Einstein’s equations [1] studied by [5], [8], [7], [6] among others, and most recently [12]
given by a infinite family of solutions parametrized by a family of admissible radial
functions R(r)

(ds)2 = g00 (dt)2 − gRR (dR)2 −R2 (dΩ)2 =

g00 (dt)2 − gRR (
dR

dr
)2 (dr)2 −R2 (dΩ)2 = g00 (dt)2 − grr (dr)2 − (R(r))2 (dΩ)2 (1.1a)

where the solid angle infinitesimal element is

(dΩ)2 = sin2(φ)(dθ)2 + (dφ)2. (1.1b)

and

g00 = (1− 2 GN Mo

R(r)
) ; gRR =

1

g00

=
1

1− (2 GN Mo/R(r))
.

grr = gRR (dR/dr)2 = (1− 2 GN Mo

R(r)
)−1 (

dR(r)

dr
)2. (1.1c)

Notice that the static spherically symmetric (SSS) vacuum solutions of Einstein’s
equations, with and without a cosmological constant, do not determine the form of the
radial function R(r) [12], [10]. There are two classes of solutions; ( i ) those solutions
whose radial functions obey the condition R(r = 0) = 0, like the Hilbert textbook black
hole solution R(r) = r with a horizon at r = 2GNMo; and ( ii ) those horizonless solutions
with an ultraviolet cutoff R(r = 0) = 2GNMo. In particular, for radial functions like

R(r) = r + 2GNMo; R(r) = [r3 + (2GNMo)
3]1/3; R(r) =

2GNMo

1− e−2GNMo/r
. (1.2)

found by Brillouin [3] , Schwarzschild [2] and Fiziev-Manev [7] respectively obeying the
conditions that R(r = 0) = 2GNMo and when r >> 2GNMo ⇒ R(r) → r.

It is very important to emphasize that despite the fact that one can always relabel
the variable r for R in such a way that the metric in eq-(1.1) has exactly the
same functional form as the standard Hilbert textbook solution [4] (black-holes so-
lutions with a horizon at r = 2GNMo) this does not mean that the Hilbert textbook
metric is diffeomorphic to the metric in eq-(1.1). The reason is that the values of r
range from 0 to ∞ while the values of R range from 2GNMo to ∞. The physical explana-
tion why there is an ultra-violet cutoff at R = 2GNMo was provided long ago by Abrams
[5], and rather than imposing this cutoff R = 2GNMo by fiat (by decree, by hand) there is
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a deep physical reason for doing so; namely it has been argued that the Hilbert textbook
solution R(r) = r does not properly represent the static gravitational field of a point mass
centered at the origin r = 0 [5], [7], [8], [6] and the Hilbert textbook solution is not static
in the region 0 < r < 2GNMo after performing the Fronsdal-Kruskal-Szekeres analytical
continuation in terms of the new u, v coordinates.

There are many physical differences among the Hilbert textbook solution that has
a horizon at r = 2GNMo and the original 1916 Schwarzchild’s horizonless solution [2].
The Schwarzschild 1916 solution is not a naive radial reparametrization of the Hilbert
solution because the radial function chosen by Schwarzschild R3 = |r|3 + (2GNMo)

3 can
never zero. The absolute value |r| properly accounts for the field of a point mass source
located at r = 0. Thus, the lower bound of R is given by 2GNMo, and R cannot be zero
for a nonvanishing point mass source.

The Fronsdal-Kruskal-Szekeres analytical continuation of the Hilbert textbook solution
for r < 2GNMo yields a spacelike singularity at r = 0 and the roles of t and r are
interchanged when one crosses r = 2GNMo; so the interior region r < 2GNMo is no
longer static. The Schwarzchild solution is static for all values of r and in particular for
r < 2GNMo ; there is no horizon at r = 2GNMo and there is a timelike naked singularity
at r = 0, the true location of the point mass source. Notice that when r >> 2GNMo the
Schwarzchild solution reduces to the Hilbert solution and one has the correct Newtonian
limt.

Colombeau [11] developed the rigorous mathematical treatment of tensor-valued dis-
tributions in General Relativity, new generalized functions (nonlinear distributional ge-
ometry) and multiplication of distributions in nonlinear theories like General Relativity
since the the standard Schwarz theory of linear distributions is invalid in nonlinear the-
ories. This treatment is essential in order to understand the physical singularity at the
point-mass location r = 0. In [10] we studied the many subtleties behind the introduction
of a true point-mass source at r = 0 ( that couples to the vacuum field ) and the physical
consequences of the delta function singularity (of the scalar curvature) at the location of
the point mass source r = 0. Those solutions were obtained from the vacuum SSS solu-
tions simply by replacing r for |r|. For instance, the Laplacian in spherical coordinates
in flat space of 1/|r| is equal to −(1/r2)δ(r), but the Laplacian of 1/r is zero. Thus,
to account for the presence of a true mass-point source at r = 0 one must use solutions
depending on the modulus |r| instead of r.

One can have an infinite number of metrics parametrized by a family of arbitrary
radial functions R(r) with the desired behaviour at r = 0 and r = ∞, whose values for
the scalar curvature (parametrized by a family of arbitrary radial functions R(r)) are
given by [10]

R = − 2 GN Mo δ(r)

R2 (dR/dr)
; in units of c = 1. (1.3a)

Since the scalar curvature R (1.3a) is a coordinate invariant quantity, this result in
eq-(1.3a) that depends explicitly on the family of radial functions R(r) corroborates once
more that one cannot view the role of the radial function R(r) as a naive change of radial
coordinates from r to R. Hence, one must view the radial function squared R2(r) as just
one of the metric tensor-field components gφφ(r) ≡ R2(r); i.e. R(r)2 is a function of
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the radial coordinate r that has a lower cutoff given by gφφ(r = 0) = (2GNMo)
2. One

must not confuse R with r and even after relabeling r for R, the metric in eq-(1.1) is
not diffeomorphic to the Hilbert textbook solution due to the cutoff R = 2GNMo. If one
chooses the radial functions to obey the condition R(r = 0) = 0 and R(r → ∞) ∼ r
then only in this case these metrics are diffeomorphic to the Hilbert textbook black hole
solution.

The relevant invariant physical quantity independent of the any arbitrary choice of
R(r) is the Einstein-Hilbert action, whether it obeys the condition R(r = 0) = 0 or
R(r = 0) = 2GNMo. In particular, the Euclideanized action after a compactification of
the temporal interval yields an invariant quantity which is precisely equal to the ”black
hole” entropy in Planck area units. The invariant area is the proper area at r = 0
given by 4πR(r = 0)2 = 4π(2GNMo)

2 . We shall see that the source of entropy is due
entirely to the scalar curvature delta function singularity at the location of the point
mass source given by R = −[2GNMo/R

2(dR/dr)]δ(r) [10] after using the 4-dim measure
4πR2 (|gRR|1/2dR) (|gtt|1/2dt) = 4πR2 dR dt in the Euclidean Einstein-Hilbert action.

Therefore, the Einstein-Hilbert action associated with the scalar curvature delta func-
tion in eq-(1.3a) when the four-dim measure is

d4x = 4π R2 dR dt. (1.3b)

is

S = − 1

16πGN

∫
(4π R2 dR dt) (− 2M δ(r)

R2 (dR/dr)
) =

1

16πGN

∫
(

2GNMo

r2
δ(r) ) (4πr2 dr dt). (1.3c)

Notice that the action (1.3c) is truly invariant and independent of any arbitrary choice
of the radial function R(r) , whether or not it is the Hilbert textbook choice R(r) = r, or
any other choice for R(r). The Euclideanized action (1.3c) becomes, after reinserting the
Newtonian coupling G = L2

Planck in order to have the proper units,

S(Euclidean) =
4π(GNMo)

2

GN

=
4π (2GNMo)

2

4 L2
Planck

=
Area

4 L2
Planck

. (1.3d)

when the Euclidean time coordinate interval 2πtE is defined in terms of the Hawking
temperature TH and Boltzman constant kB as 2πtE = (1/kBTH) = 8πGNMo. It is
interesting that the Euclidean action (1.3c) is the same as the ”black hole” entropy (1.3d)
in Planck area units. The source of entropy is due entirely to the scalar curvature delta
function singularity at the location of the point mass source. Furthermore, this result
that the Euclidean action is equal to the entropy in Planck units can be generalized to
higher dimensions upon recurring to Schwarzschild-like metrics in higher dimensions.

The fact that a point-mass can have a non-zero proper area 4πR(r = 0)2 =
4π(2GNMo)

2, but no volume, due to the metric and curvature singularity at r = 0 seems
to indicate a stringy nature underlying the very notion of a point-mass itself. The string
world-sheet has a non-zero area but zero volume. Aspinwall [13] has studied how a string

4



(an extended object) can probe space-time points due to the breakdown of our ordinary
concepts of Topology at small scales. In [12] it was shown how the Bars-Witten stringy
1 + 1-dim black-hole metric [14] can be embedded into the 4-dim conformally re-scaled
metrics displayed in eq-(1.1), if and only if, the radial function R(r) was given implicitly
by the following relationship involving R and r ( the left hand side has the same functional
form as the radial tortoise coordinate) :

∫ dR

1− 2GNMo/R
= R + 2GNMo ln (

R− 2GNMo

2Mo

) = 2GNMo ln [ sinh
r

2GNMo

].

(1.4a)
one can verify that there is an ultra-violet cutoff at r = 0

R(r = 0) = 2GNMo; R(r →∞) → R ∼ r. (1.4b)

which precisely has the same behaviour at r = 0 and ∞ as the radial functions displayed
in this section. The fact that the stringy black-hole 1 + 1-dim solution can be embedded
into the conformally rescaled solutions of this section, for a very specific functional form
of the radial function R(r), with the same ”boundary” conditions at r = 0 and r = ∞
as the radial functions displayed in this section, is very appealing. Similar conclusions
apply to horizonless solutions in higher dimensions D > 4 [12] with a cutoff R(r = 0) =
[16πGDMo/(D − 2)ΩD−2]

1/D−3 where the point-mass has a nonzero D − 2-dimensional
measure and a zero D− 1-dim ”volume”. The point-mass in this case is p− branelike in
nature with p + 1 = D − 2. For example, in D = 5 one has a membrane-like behaviour
of a point mass. In D = 6 one has a 3-brane-like behaviour of a point mass, etc.... The
D = 4 case is special since it corresponds to the string.

1.2 Renormalization Group Flow and Horizonless Solutions

The purpose of this section is to explain the meaning of the ultra-violet cutoff R(r =
0) = 2GNMo within the context of the exact Nonperturbative Renormalization Group
flow of the Newtonian coupling G = G(r) in Quantum Einstein Gravity [16] where a non-
Gaussian ultra-violet fixed point was found G(r = 0) = 0. The presence of an ultra-violet
cutoff R = 2GNMo originates from the mere presence of matter and permits to relate
the metric component gtt = 1 − 2GNMo/R(r) to gtt = 1 − 2G(r)M(r)/r, in such a way
that the the small distance behaviour of G(r) eliminates the presence of a horizon at
r = 2GNMo : we will see why the metric component gtt evaluated at the location of the
point mass source r = 0 is gtt(r = 0) = 0, due to G(r = 0) = 0, M(r = 0) = finite but
it does not eliminate the delta function singularity of the scalar curvature at r = 0. This
result is compatible with the ultra-violet cutoff of the radial function R(r = 0) = 2GNM .
GN is the value of the Newtonian coupling in the deep infrared and M = Mo is the Kepler
mass as seen by an observer at asymptotic infinity.

The momentum dependence of G(k2) was found by Reuter et al [16] to be
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G(k2) =
GN

1 + α GN k2
. (1.5a)

The momentum-scale relationship is defined

k2 = (
β

D(R)
)2, β = constant. (1.5b)

in terms of the proper radial distance D(R)

D(R) =
∫ R

2GNMo

√
gRR dR =

∫ R

2GNMo

dR√
1− (2 GN Mo/R)

=

√
R ( R− 2 GN Mo) + 2 GN Mo ln [

√
R

2GNMo

+

√
R− 2GNMo

2GNMo

]. (1.6)

where the lower (ultra-violett cutoff ) is R(r = 0) = 2GNMo. The proper distance
corresponding to r = 0 is D(R(r = 0)) = D(R = 2GNMo) = 0 as it should since the
proper distance from r = 0 is zero when one is located at r = 0.

Hence,

G = G(R) =
GN

1 + α GN k2
=

GN D(R)2

D(R)2 + αβ2 GN

, (1.7)

such that G(R(r = 0)) = G(R = 2GNMo) = 0 consistent with the findings [16] since
D(R(r = 0)) = D(R = 2GNMo) = 0.

An important remark is in order. There is a fundamental difference between the
work of Reuter et al [16] and ours . The metric components studied by [16] were of the
form, gtt = 1−2G(r)Mo/r, .... and are not solutions of Einstein’s field equations. Whereas
in our case, the metric components (1.1) gtt = 1− 2G(r)M(r)/r = 1− 2GNMo/R(r), ....
are solutions of Einstein’ equations displayed in eq-(1.1). This is one of the most salient
features in working with the most general metric (1.1) involving the radial functions R(r)
instead of forcing R(r) = r.

Hence, given that R = R(r), by imposing the following conditions valid for all values
of r

(1− 2 GN Mo

R(r)
) = (1− 2 G(r) M(r)

r
). (1.8)

(dR
dr

)2

(1− 2 GN Mo

R(r)
)

=
1

(1− 2 G(r) M(r)
r

)
. (1.9)

from eqs-(1.7, 1.8, 1.9) one infers that

dR

dr
= 1 ⇒ R(r) = r + 2GNMo. (1.10)
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which is the Brillouin choice for the radial function as well as the relation

G(r) = GN (
r

R
) (

Mo

M(r)
) = (

GN D(R)2

D(R)2 + αβ2 GN

) ⇒

M(r) = Mo (
r

R
) (

D(R)2 + αβ2 GN

D(R)2
). (1.11)

that allows us to determine the form of the M(r) once the radial function R(r) = r +
2GNMo is plugged into D(R) given by eq-(1.6). The constant found by Reuter et al [16]
is αβ2 = 118/15π and the proper distance D(R) is given by eq-(1.6).

When r = 0 a careful analysis reveals

M(r → 0) → (constant)
1

2 GN Mo

.. (1.12)

therefore, the running mass parameter at r = 0, M(r = 0) ∼ 1/R(r = 0) = 1/(2GNMo)
is finite instead of being infinite. The running mass at r = 0 has a cutoff given by
the inverse of the ultra-violet cutoff R(r = 0) = 2GNMo ( up to a numerical constant
). When r = 0 one has in eqs-(1.7, 1.11) that G(r = 0) = 0. When r → ∞ one has
M(r →∞) → Mo as expected, where Mo is the Kepler mass observed by an observer at
asymptotic infinity ( deep infrared ) and G(r →∞) → GN .

The running flow M(r) was never studied by [16]. Our ansatz in eqs-(1.8, 1.9) is an
heuristic one. In the special case when M(r = 0) = Mo one gets the interesting result
for the value of Mo given by Mo ∼ MPlanck which is the same, up to a trivial numerical
factor, to the Planck mass remnant in the final state of the Hawking black hole evaporation
process found by [16] after a Renormalization Group improvement of the Vaidya metric
was performed.

Concluding, R = r + 2GNMo is the sought after relation between r and R, out of an
infinite number of possible functions R(r) obeying the SSS vacuum solutions of Einstein’s
equations. We may notice that r = r(R) = D(R) given by eq-(1.6) is the appropriate
choice for the radial function if, and only if, the spatial area coincides with the proper
area 4πR(r)2 . The spatial area A(r) is determined in terms of the infinitesimal spatial
volume dV (r) as follows :

dV (r) = A(r)dr ⇒ A(r) = 4πR(r)2 (dR/dr)√
1− 2GNMo/R(r)

. (1.13a)

When A(r) = 4πR2 then

(dR/dr)√
1− 2GNMo/R

= 1. (1.13b)

since the integration of eq-(1.12) was performed in eq-(1.6), one can infer then that r =
r(R) = D(R) is the choice in this case for the functional relationship between R and r;
in particular A(r = 0) = 4π(2GNMo)

2, which is not true in general when the proper area
is not equal to the spatial area. The volume is zero at r = 0.

7



To finalize this subsection, when the radial function R = r+2GNMo has been specified
by the RG flow solutions [16] , the scalar curvature is

R = − 2 GN Mo δ(r)

R2 (dR/dr)
= − 2 GN Mo δ(r)

(r + 2GNMo)2
. (1.14a)

and has a delta function singularity at r = 0 of the form

−2 GN Mo δ(r = 0)

(2GNMo)2
= − δ(r = 0)

2GNMo

. (1.14b)

compared to the stronger singular behaviour of the Hilbert textbook solution at r = 0
when R = r

R(Hilbert) = − 2 GN Mo δ(r)

R2 (dR/dr)
= − 2 GN Mo δ(r)

r2
⇒

R(r = 0) = − 2 GN Mo δ(r = 0)

02
. (1.14c)

The reason the singularity of (1.14b) is softer than in (1.14c) is because when there is
an ultra-violet cutoff of the radial function R(r = 0) = 2GNMo (due to the presence
of matter) the proper area 4π(2GNMo)

2 is finite at r = 0 and so is the surface mass
density. However, since the volume is zero at the location r = 0 of the point-mass, the
volume mass density is infinite and one cannot eliminate the singularity at r = 0 given
by R = −δ(r = 0)/(2GNMo) .

1.3 Anti de Sitter-Schwarzschild Metrics and running Cosmo-
logical Constant

We begin with the generalized de Sitter and Anti de Sitter metrics that will help us
understand the nature of the infrared cutoff required to solve the cosmological constant
problem. In [10] we proved why the most general static form of the ( Anti ) de Sitter-
Schwarzschild solutions are given in terms of an arbitrary radial function by

g00 = ( 1− 2GNMo

R(r)
− Λo

3
R(r)2 ), grr = −( 1− 2GNMo

R(r)
− Λo

3
R(r)2 )−1 (dR(r)/dr)2.

(1.15)
The angular part is given as usual in terms of the solid angle by −(R(r))2(dΩ)2.

Λo is the cosmological constant. The Λo < 0 case corresponds to Anti de Sitter-
Schwarzschild solution and Λo > 0 corresponds to the de Sitter-Schwarzschild solution.
The physical interpretation of these solutions is that they correspond to ”black holes”
in curved backgrounds that are not asymptotically flat. For very small values of R one
recovers the ordinary Schwarzschild solution. For very large values of R one recovers
asymptotically the ( Anti ) de Sitter backgrounds of constant scalar curvature.

Since the radial function R(r) can be arbitrary, one particular expression for the
radial function R(r) , out of an infinite number of arbitrary expresions, in the de Sitter-
Schwarzschild (Λo > 0) case one may choose [10]
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1

R− (2GNMo)
=

1

r
+

√
Λo

3
. (1.16)

When Λo = 0 one recovers R = r + (2GNMo) that has a similar behaviour at r = 0 and
r = ∞ as the original Schwarzschild solution of 1916 given by R3 = r3 + (2GNMo)

3; i.e.
R(r = 0) = 2GNMo and R(r → ∞) ∼ r respectively. When Mo = 0 one recovers the
pure de Sitter case and the radial function becomes

1

R
=

1

r
+

√
Λo

3
. (1.17)

In this case, one encounters the reciprocal situation ( the ”dual” picture ) of the
Schwarzschild solutions : ( i ) when r tends to zero ( instead of r = ∞ ) the radial
function behaves R(r → 0) → r ; in particular R(r = 0) = 0 and (ii) when r = ∞ (

instead of r = 0 ) the value of R(r = ∞) = RHorizon =
√

3
Λo

and one reaches the location

of the horizon given by the condition g00[R(r = ∞)] = 0.
A reasonable and plausible argument as to why the cosmological constant is not zero

and why it is so tiny was given by [10] : In the pure de Sitter case, the condition

g00(r = ∞) = 0 ⇒ 1− Λo

3
R(r = ∞)2 = 0 (1.18)

has a real valued solution

R(r = ∞) =

√
3

Λo

= RHorizon = Infrared cutoff. (1.19)

and the correct order of magnitude of the observed cosmological constant can be derived
from eq-(1.19) by equating R(r = ∞) = RHorizon = Hubble Horizon radius as seen today
since the Hubble radius is constant in the very late time pure inflationary de Sitter phase
of the evolution of the universe when the Hubble parameter is constant Ho. The metric in
eq-(1.15) is the static form of the generalized de Sitter ( Anti de Sitter ) metric associated
with a constant Hubble parameter.

Therefore, by setting the Hubble radius to be of the order of 1061 LPlanck and by
setting G = L2

Planck ( h̄ = c = 1 units) in

8π G ρvacuum = Λo =
3

R(r = ∞)2
=

3

R2
H

⇒

ρvacuum =
3

8π

1

L2
P

1

R2
H

=
3

8π

1

L4
P

(
LP

RH

)2 ∼ 10−123 (MPlanck)
4, . (1.20)

we obtain a result which agrees with the experimental observations when RHubble ∼
1061LPlanck.

Notice the importance of using the radial function R = R(r) in eq-(1.17). Had one used
R = r in eq-(1.17) one would have obtained a zero value for the cosmological constant
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when r = ∞ . Thus, the presence of the radial function R(r) is essential to understand
why the cosmological constant is not zero and why it is so tiny .

The idea now is to relate the metric components in the Anti de Sitter-Schwarzcshild
case involving the running G(r), M(r), Λ(r) parameters with the metric components
of (1.15) involving the unique and sough-after radial function R(r) and the constants
GN , Mo, Λo (as seen by an asymptotic observer in the deep infrared region). The equa-
tions which determine the forms of M(r) and R(r) are given by

( 1− 2 GN Mo

R(r)
− Λo

3
R(r)2 ) = ( 1− 2 G(r) M(r)

r
− Λ(r)

3
r2 ). (1.21)

( 1− 2 GN Mo

R(r)
− Λo

3
R(r)2 )−1 (dR(r)/dr)2 = ( 1− 2G(r) M(r)

r
− Λ(r)

3
r2 )−1. (1.22)

then from eqs-(1.21, 1.22) one infers that

dR

dr
= 1 ⇒ R(r) = r + R∗ (1.23)

where the constant of integration R∗ is now the root of the cubic equation, and not the
value 2GNMo, given by

1− 2 GN Mo

R(r = 0)
+

Λo

3
R(r = 0)2 = 1− 2 GN Mo

R∗
+

Λo

3
R2

∗ = = 0. (1.24)

such that gtt(R(r = 0)) = gtt(R∗) = 0. The real positive root of the cubic equation (found
after multiplying (1.24) by R∗ 6= 0) is

R∗ = [
3GNMo

|Λo|
+

√√√√(3GNMo)2

Λ2
o

+
1

|Λo|3
]1/3 + [

3GNMo

|Λo|
−

√√√√(3GNMo)2

Λ2
o

+
1

|Λo|3
]1/3.

(1.25)
Because Anti de Sitter space has ΛAdS < 0, we have already aken into account the negative
sign in the expression in eq-(1.25) by writing ΛAdS = −|Λo| and we must disregard the
two complex roots (a pair of complex conjugates).

The values of R range from 0 < R∗ ≤ R ≤ ∞ and correspond to the values of
r ranging from 0 ≤ r ≤ ∞. This is very reasonable since R has an ultra-violet cutoff
given by the root of the cubic R∗ > 0. If R was allowed to attain the values of zero the
metric component gtt would blow up. r can in fact attain the zero value, but not the
radial function R(r) = r + R∗. The metric component grr in (1.15) blows up at r = 0,
location of the singularity.

Notice that one cannot take the limits Λ0 → 0 in eq-(1.25) after having found the
roots of the cubic equation because that limit is singular. One must take the limit |Λo| → 0
of eq-(1.24) before and afterwards find the root of gtt(R∗) = 0 given by R∗ = 2GNMo

(when |Λo| = 0).
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After having found the root R∗ of the cubic equation, from eq-(1.21) one infers

2 GN Mo

r + R∗
+

Λo

3
(r + R∗)

2 =
2 G(r) M(r)

r
+

Λ(r)

3
r2. (1.26)

which yields M(r)

M(r) =
r

2G(r)
[

2GNMo

r + R∗
+

Λo

3
(r + R∗)

2 − Λ(r)

3
r2 ]. (1.27)

where now the proper distance D(R) associated with the metric (1.15) is given the elliptic
integral whose lower limit of integration is now given by the cubic root R∗ (instead of
2GNMo) :

D(R) =
∫ R

R∗

√
gRR dR =

∫ R

R∗

dR√
1− 2 GN Mo

R
+ |Λo|

3
R2

= Elliptic Integral. (1.28a)

such
D(R(r = 0)) = D(R = R∗) = 0. (1.28b)

The running coupling is the one given by [16]

G = G(R) =
GN

1 + α GN k2
=

GN D(R)2

D(R)2 + αβ2 GN

. (1.29)

where D(R) is given by the elliptic integral and the running cosmological parameter is
[16]

|Λ(k)| = |Λo| +
b GN

4
(k4) = |Λo| +

b GN

4

β4

D(R)4
. (1.30)

where the momentum-scale relation is k2 = (β2/D(R)2) .
As expected, in eq-(1.27) we have the correct limits : M(r → ∞) → Mo, since when

r →∞, R(r) → r, |Λ(r)| → |Λo| and G(r) → GN . M(r = 0) ∼ 1/R∗ is finite also because
r/G(r) and Λ(r)r2 are finite as r → 0.

In the case of de Sitter-Schwarzschild metric , Λo > 0, one has a negative real root
and a positive double root [10] R2 = R3 > 0, R1 < 0; however, there is no horizon since
gtt does not change signs as once crosses the double-root location ; there is problem with
the R1 < 0 solutions and there is a pole of gtt at R = 0 . For this reason we have focused
on the Anti de Sitter-Schwarzschild metric in this subsection.

2 Jordan-Brans-Dicke Gravity

We wish now to relate the metric of eq-(1.1) that solves the vacuum Einstein field equations
for r > 0 written in terms of GN , Mo, R(r) with a metric written in terms of G(r), M(r), r

11



that does not solve the vacuum field equations but instead the field equations in the
presence of a scalar field Φ associated with the Jordan-Brans-Dicke theory of gravity.
Such metric is given by

(ds)2 = gtt(r) (dt)2 − grr(r) (dr)2 − ρ(r)2 (dΩ)2. (2.1)

A conformal transformation g′
µν = e2λ gµν relating the two metrics can be attained by

starting with the Brans-Dicke-Jordan scalar-tensor action∫
d4x

√
g [ Φ2 R + 6 (∇µΦ) (∇µΦ) ]. (2.2)

and which can be transformed into a pure gravity action by means of a conformal trans-
formation

g′
µν = e2λ gµν ;

√
g′ = e4λ √g. (2.3)

√
g′ R′(g′) =

√
g e2λ [ R − 6 (∇µ∇µ λ) − 6 (∇µλ)(∇µλ) ] (2.4)

By setting

e2λ ≡ Φ2

Φ2
o

=
GN

G(r)
. (2.5)

one can rewrite :

√
g′ R′(g′) =

√
g

Φ2
o

[ Φ2R − 6 Φ (∇µ∇µ Φ) ] (2.6)

due to the fact that (∇µ
√

g) = 0 then

√
g Φ(∇µ∇µ Φ) = ∇µ (

√
g Φ∇µ Φ)−√g (∇µΦ)(∇µΦ). (2.7)

since total derivative term drops from the action one has the equalities

∫
d4x

√
g [ Φ2 R + 6 (∇µΦ) (∇µΦ) ] =

∫
d4x

√
g [ Φ2 R − 6 Φ (∇µ∇µ Φ) ] =

1

16πGN

∫
d4x

√
g′ R′(g′) (2.8)

therefore, one can solve the Einstein vacuum field equations for the metric g′
µν ( for r > 0

) and perform a conformal transformation g′
µν = e2λ gµν to obtain the metric that solves

the field equations corresponding to the Jordan-Brans-Dicke action.
The running Newtonian coupling G(r) is now defined explicitly in terms of the scalar

field as follows

Φ2 =
1

16πG(r)
; Φ2

o =
1

16πGN

. (2.9a)

and the dimensionless scaling factor e2λ is given by the ratio :
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e2λ =
GN

G(r)
=

Φ2

Φ2
o

. (2.9b)

such that the equalities among the three lines of eq-(2.5) are satisfied.
The scalar field Φ that determines the functional form of G(r) must solve the general-

ized Klein-Gordon equation obtained from a variation of the action (2.5) w.r.t the scalar
field Φ

(∇µ∇µ − 1

6
R) Φ = 0, for r > 0. (2.10)

and the latter equation is equivalent to the equation R′(g′) = 0 since the scalar curvature
R, for r > 0, is fixed by eq-(2.6) after setting R′(g′) = 0 because the metric g′

µν is a
solution of the Einstein vacuum field equations for r > 0. When R′(g′) = 0, for r > 0,
yields the scalar curvature

R(g) =
6

Φ
(∇µ∇µ Φ). (2.11)

which is precisely equivalent to the generalized Klein-Gordon equation (2.10). This means
that the scalar Φ field does not have dynamical degrees of freedom since it is identified
with the conformal factor eλ = Φ/Φo. Therefore one can safely equate the scalar field Φ2

with (1/16πG(r)) giving

R(r) =
6

Φ
(∇r∇r Φ) =

6√
G(r)

1
√

g
∂r (

√
g grr ∂r

√
G(r) ). (2.12)

where the metric components gµν necessary to evaluate the Laplace-Beltrami operator are
obtained directly via the conformal scaling of the metric that solves the vacuum static
spherical solutions of Einstein’s equations of the previous section :

gtt = e−2λ (1− 2GNMo

R(r)
). (2.13)

gRR = e−2λ 1

1− 2GNMo

R

, grr = gRR (dR/dr)2. (2.14)

gφφ = e−2λ R(r)2 = ρ(r)2, gθθ = e−2λ R(r)2 sin2(φ). (2.15)

√
g = e−4λ R(r)2 (dR/dr) sin(φ). (2.16)

Since e−2λ = G(r)/GN and G(r = 0) = 0 then the radial rho function obeys the condition
ρ(r = 0) = 0.

The new proper distance D(R) is now given by
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D(R) =
∫ R

2GNMo

e−λ√
1− (2GNMo/R)

dR =
∫ R

2GNMo

(G(R)/GN)1/2√
1− (2GNMo/R)

dR (2.17)

and differs from the expressions of eq-(1.6) because of the conformal factor.
However, there is a caveat if we now try to use the running flow of the Newtonian

coupling of the previous section [16]

G(R) =
GN D(R)2

D(R)2 + αβ2 GN

⇒ D(R) =

√√√√(αβ2 GN) G(R)

GN − G(R)
. (2.18)

because the RG flow equations must differ now due to the presence of the scalar field
Φ. To prove why one cannot use the running flow equation (2.18) for G used in section
1.2, 1.3, let us differentiate both sides of the expression for D(R) in eq-(2.18) and upon
equating the result with the integrand of eq-(2.17) leads to the differential equation
obeyed by G(R) :

dD(R)

dR
=

αβ2 G2
N

2 (GN −G(R))2

√
(αβ2GN ) G(R)
GN − G(R)

dG(R)

dR
=

(G(R)/GN)1/2√
1− (2GNMo/R)

. (2.19)

subject to the boundary conditions G(R(r = 0)) = G(R = 2GNMo) = 0 and G(r →∞) =
G(R → ∞) → GN . The differential equation (2.19) is the equation that determines the
functional form of G(R). Notice that functional form of G(R) which obeys the above
differential equation is not the same as the result obtained for G(R) in eq-(1.7) of the
previous section because the proper distance D(R) given by the integral of eq-(2.17)
differs from the integral of eq-(1.6). The constant found by Reuter et al [16] is αβ2 =
118/15π.

One can integrate eq-(2.19) giving the functional relationship between G and R :

√
αβ2 G2

N

2

∫ G

Go

dG

G
√

(GN −G)3
=

∫ R

2GNMo

dR√
1− (2GNMo/R)

=

√
αβ2 G2

N

2
[

2

GN

√
(GN −G)

−
2 arctanh [

√
1− (G/GN) ]

(GN)3/2
] − I[Go] =

√
R ( R− 2 GN Mo) + 2 GN Mo ln [

√
R

2GNMo

+

√
R− 2GNMo

2GNMo

]. (2.20)

where Go ≡ G(R = 2GNMo).
One can immediately deduce that the first integral diverges when G = GN which is

compatible with the condition G(R →∞) = GN . But there is a problem in enforcing the
behaviour of G(r = 0) = 0; one cannot impose the condition Go ≡ G(R = 2GNMo) = 0
because the G integral also diverges when G = Go = 0 ! ( the integral is −∞ ).
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Therefore, one must have the condition Go ≡ G(R = 2GNMo) 6= 0. The value of Go

obeying GN > Go = G(r = 0) > 0 can be determined from solving the transcendental
equation derived from the condition

I[Go] =

√
αβ2 G2

N

2
[

2

GN

√
(GN −Go)

−
2 arctanh [

√
1− (Go/GN) ]

(GN)3/2
] = 0. (2.21)

The result I[Go] = 0 is now compatible with the behaviour of the R integral which is zero
when R(r = 0) = 2GNM0. To sum up : one cannot satisfy the condition G(R(r = 0)) = 0
required by eqs-(1.7, 2.18) found by [16].

The same conclusions apply ( one is forced to impose Go > 0 ) if we had taken a minus
sign in front of the square root in the R integral which leads to G(r → ∞) = 0 ( R ∼ r
when r → ∞), as opposed to the desired behaviour G(r → ∞) → GN It is interesting
that this result G(r →∞) = 0, when the minus sign in front of the square root is chosen,
is ”dual” to the behaviour found in the RG flow solutions by [16] where at r = 0 (instead
of r = ∞ ) one encounters G(R(r = 0)) = G(R = 2GNMo) = 0 ( asymptotic freedom).

Concluding, the fact that G integral (2.20) diverges at G = 0 is a signal that one
cannot use the running flow equation (2.18) for G in the presence of the Jordan-Brans-
Dicke scalar Φ. One would have to solve the modified RG equations that will involve the
beta functions for the Φ field in addition to the metric gµν . A similar divergence problem
was encountered by [17]. One can bypass this divergence problem by imposing G(r = 0) =
G(R = 2GNM0) = Go > 0 where Go is given by a solution of the trascendental equation.
By taking the minus sign in front of the square root we found an ultraviolet/infrared
”duality” behaviour of the couplings, at r = 0 and R ∼ r → ∞, which warrants further
investigation.

3 Concluding Remarks : On Noncommutative and

Finsler Geometries

We conclude by discussing some speculative remarks. It is well known (see references in
[17]) that by replacing GN → G(k2) = GN(1 + GNk2)−1 leads to 1/k4 modifications of
the propagator

G(k2)

k2
=

GN

k2 (1 + GNk2)
= GN [

1

k2
− 1

k2 + M2
Planck

], GNM2
Planck = 1. (3.1)

that correspond to quadratic curvatures R2 of perturbative quantum gravity. The
Lanczos-Lovelock theories of Gravity involving higher powers of the curvature have the at-
tractive feature that the equations of motion are no more than second order in derivatives
of the metric and contain no ghosts. The authors [18] have found black hole solutions,
topological defects, and naked singularities as well, in pure Lanczos-Lovelock Gravity with
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only one Euler density term. The fact that naked singularities were found by [18] deserve
further investigation within the context of modified propagators induced by a running
Newtonian coupling.

Another interesting field of study is Noncommuttaive Geometry, Fuzzy spaces, Fractal
geometries, etc... The standard noncommutative algebra ( there are far more fundamental
algebras like Yang’s algebra in noncommutative phase spaces ) is of the form

[xµ, xν ] = iΘµν . [pµ, pν ] = 0 [xµ, pν ] = iηµν (3.2)

where ηµν is a flat space metric and the structure constants (c-numbers ) Θµν = −Θνµ

are c-numbers that commute with x, p and that have dimensions of length2; the Θµν are
proportional to the L2

Planck. A change of coordinates

x
′µ = xµ +

1

2
Θµρ pρ. p

′µ = pµ. (3.3)

leads to an algebra with commuting coordinates and momenta

[x
′µ, x

′ν ] = 0. [p
′µ, p

′ν ] = 0. [x
′µ, p

′ν ] = iηµν . (3.4)

Due to the mixing of coordinates and momentum in the new commuting variables
x′, p′ one can envisage coordinate and momentum dependent metrics in phase space,
in particular Finsler geometries, and whose average over the momentum coordinates
< πµν(x, p) >p = gµν(x) yield the effective spacetime metric. This momentum av-
eraging procedure is very similar to the averaging of the momentum-scale dependent
metrics employed in the Renormalization Group flow of the effective average action by
[16]. Morever, the momentum dependence of the new coordinates x′ leads to a momentum

dependent radial coordinate r′ =
√

x′µ x′
µ involving commuting x′µ coordinates

r′ =

√
(xµ +

1

2
Θµρ pρ) (xµ +

1

2
Θµτ pτ ) ∼ r [ 1 +

1

4r2
Θµν xµ pν + ..... ]. (3.5)

Similar attempts to study the Noncommutative effects on black holes by modifying r → r′

have been made by many other authors, however, to our knowledge its relation to phase
spaces and Finsler geometries has not been explored. The impending question is to find
another interpretation of the radial function R(r) and the physical meaning of the cutoff
R(r = 0) = 2GNMo in terms of the momentum dependent radial coordinate r′.

When xµ = 0 ⇒ r = 0 and (3.5) becomes

r′ =
1

2

√
Θµρ pρ Θµτ pτ . (3.6)

The expression inside the square root can be written in terms of pµp
µ = M2

o as

Θµρ Θµτ pρ pτ = (constant)2 L4
P pµ pµ = (constant)2 L4

P M2
o . (3.7a)

adjusting the value of the constant = 4, gives then the ultra-violet cutoff

r′(r = 0) =
1

2

√
Θµρ pρ Θµτ pτ = 2 L2

P Mo = 2 GN Mo. (3.7b)
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consistent with R(r = 0) = 2GNMo with the only subtlety that that r =
√

xµxµ involves
now noncommuting coordinates xµ.

When r 6= 0, the terms

Θµρ pρ xµ + Θµτ xµ pτ = Θµρ pρ xµ + Θµτ xµ pτ =

Θµρ pρ xµ + Θµρ xµ pρ = Θµρ ( xµ pρ − i ηµρ ) + Θµρ xµ pρ = 2 Θµρ xµ pρ. (3.8)

due to the antisymmetric property of Θµρ, one has Θµρ ηµρ = 0.
Becuase the quantity Θµρ xµ pρ can be interpreted as a modified angular momentum

operator, in the spherically symmetric case, by imposing the condition

Θµρ xµ pρ ∼ L2
Planck Mo ω(r) r2 = GN Mo ω(r) r2 (3.9)

where ω(r) is a scale-dependent frequency, one is able to express the commuting r′ =√
x′µ x′

µ variable in terms of the non-commuting one r =
√

xµxµ :

r′ = r′(r) =
√

r2 + 2Θµρ xµ pρ + (2GNMo)2 =√
r2 + γ GNMo ω(r) r2 + (2GNMo)2. (3.10)

where γ is a constant. The question is to see whether or not metrics gµν(R) expressed in
terms of radial functions R(r) of the noncommuting radial variable r solve the Noncommu-
tative deformations of Einstein’s equations; for example the field equations corresponding
to Moyal star product deformations of Einstein Gravity [20]. When r = 0 one recovers
the cutoff r′(r = 0) = 2GNMo. Concluding, this procedure to relate the effects of the
Noncommutativity of coordinates with the ultra-violet cutoff R(r = 0) = 2GNMo is quite
promising . We shall leave it for future work.

Let us summarize the main conclusions of this work :

1. The original Schwarzschild’s 1916 solution has no horizons and is static for all
values of r with a timelike naked singularity at r = 0. The radial function R =
[r3 + (2GNMo)

3]1/3 has an UV cutoff in R(r = 0) = 2GNMo.

2. The ”black hole” entropy expression is the same as the Euclideanized Einstein-
Hilbert action corresponding to the scalar curvature delta function singularity due
to the presence of a mass point at the origin r = 0. Such delta function scalar
curvature singularity can account for the ”black hole” entropy. For this reason a
microscopic theory of a point-mass is needed to understand key aspects of Quantum
Gravity. A point-mass may be stringy in Nature since due to the ultra-violet cutoff
R(r = 0) = 2GNMo, a point-mass source at r = 0 has non-zero area but zero
volume; a string world-sheet has non-zero area and zero volume.

3. In sections 1.2, 1.3 we showed how the exact Nonperturbative Renormalization
Group flow of the running Newtonian coupling G(r) in Quantum Einstein Gravity
[16] was consistent with the existence of an ultra-violet cutoff R(r = 0) = 2GNMo
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of the Schwarzschild solutions in eq-(1.1), after setting gtt = 1 − 2GNMo/R(r) =
1 − 2G(r)M(r)/r, ..... We proved that due to the condition G(r = 0) = 0 and
M(r = 0) ∼ 1/2GNMo, there was no horizon since it is at the location r = 0 that
gtt(r = 0) = 0.

4. Similar results followed in the case of Anti de Sitter-Schwarzschild metrics with
a running cosmological parameter Λ(r) and Newtonian coupling G(r). The ultra-
violet cutoff in this case was no longer given by 2GNMo but instead by a real-valued
positive root R∗ of the cubic equation associated with the condition gtt(R(r = 0)) =
gtt(R∗) = 0. There was a singularity at r = 0.

5. Generalized de Sitter metrics led to an infrared cuttoff R(r = ∞) = RHubble =
(3/Λo)

1/2 in the very late time de Sitter inflationary phase of the evolution of the
universe ( when the Hubble parameter is constant ) and provided a plausible argu-
ment why the cosmological constant is not zero and why it is so tiny [10].

6. In section 2 we studied how a running Newtonian coupling G(r) could also be
accommodated naturally in a Jordan-Brans-Dicke scalar-tensor theory of Gravity via
a trivial conformal transformation of the Schwarzschild metric solution. However,
the running Newtonian coupling G(r) = (16πΦ2)−1 corresponding to the scalar field
Φ could not satisfy the asymptotic freedom condition G(r = 0) = 0 found by [16].
Nevertheless, our results in section 2 exhibited an interesting ultra-violet/infrared
duality behaviour of G(r) that warrants further investigation. A combinatorial
geometry and dual nature of gravity was proposed by [19] using Matroid theory.

To finalize we should stress the search for the foundational (quantum equivalence)
principle of Quantum Gravity which is related to the true origin of inertia (mass/energy).
Mach’s principle is an intriguing concept with several formulations and applications [21],
[23], [24], [25], [26], [22]. A proper and precise implementation of Mach’s principle, beyond
the equivalence’s principle of General Relativity, in modern physics is still lacking, to our
knowledge. Furthermore, it is very likely that our naive notions of Topology break down
at small scales [13] and for this reason we must redefine our notion of a ”point” such
that this novel ”fuzzy” topology is compatible with the stringy geometry. For the role
of Fractals in the construction of a Scale Relativity theory based on scale resolutions of
”points” and the minimal Planck scale see [15].
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Appendix A

Consider the conformal map

g′
µν = e2λgµν . (A.1)
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Here, the indices µ, ν run from 0, 1, ..., d− 1. The Christoffel symbols become

Γ′µ
αβ(g′) = Γµ

αβ(g) + Σµ
αβ, (A.2)

where

Σµ
αβ = δµ

αλ,β +δµ
βλ,α−gαβλ,µ. (A.3)

Using (A.2) one finds that the Riemann tensor can be written as

R′µ
ναβ(g′) = Rµ

ναβ(g) +∇αΣµ
νβ −∇βΣµ

νa + Σµ
σαΣσ

νβ − Σµ
σβΣσ

να (A.4)

where ∇α denotes covariant derivative in terms of Γµ
αβ(g). By straightforward computa-

tion, using (A.3) we find

R′µ
ναβ(g′) = Rµ

ναβ(g) + {δµ
β∇αλ,ν −δµ

α∇βλ,ν −gνβ∇αλ,µ + gνα∇βλ,µ}

+{(δµ
αλ,β −δµ

βλ,α )λ,ν −(δµ
αgνβ − δµ

βgνα)λ,σ λ,σ − (gναλ,β −gνβλ,α )λ,µ}.
(A.5)

From (A.5) we get the Ricci tensor

R′
νβ(g′) = Rνβ(g)− {(d− 2)∇βλ,ν +gνβ∇µλ

,µ}

+(d− 2){λ,β λ,ν −gνβλ,µ λ,µ},
(A.6)

which in turn gives us the scalar curvature

R′ = e−2λ{R − 2(d− 1)∇µλ
,µ − (d− 2)(d− 1)λ,µ λ,µ}. (A.7)

Therefore we get√
−g′R′ =

√
−ge(d−2)λ{R − 2(d− 1)∇µλ

,µ − (d− 2)(d− 1)λ,µ λ,µ}. (A.8)

Since ∇µ

√
−g = 0, (A.8) can also be written as

√
−g′R′ =

√
−ge(d−2)λR−∇µ{(2(d−1)

d−2
)
√
−g(e(d−2)λ),µ}

+(d− 2)(d− 1)
√
−ge(d−2)λλ,µ λ,µ.

(A.9)

We observe that the second term is a total derivative and therefore can be dropped. So,
we have √

−g′R′ =
√
−ge(d−2)λ(R+ (d− 2)(d− 1)λ,µ λ,µ). (A.10)

For d = 4 the expression (A.10) is reduced to√
−g′R′ =

√
−ge2λ(R+ 6λ,µ λ,µ). (A.11)
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Some times it becomes convenient to write eλ = Φ. In this case, we have λ,µ = Φ−1Φ,µ .
Consequently, we see that (A.11) can also be written as√

−g′R′ =
√
−g(Φ2R+ 6Φ,µ Φ,µ) (A.13)

or √
−g′R′ =

√
−g(Φ2R+ 6∇µΦ∇µΦ). (A.14)

since ∇µΦ = Φ,µ.
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