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Abstract

The theorems stated and proven by Emmy Noether are reviewed from
a historical and mathematical perspective. It emphasizes the Lagrangian
and variational or functional formalism, using basic tools of differential
and integral analysis. Finally, some examples and applications in Theo-
retical Physics are indicated, and the intuitive meaning of both theorems
is explained. Finally, possible generalizations and extensions of the the-
orem are suggested, as well as a mention of the formalism of jets and
differential forms that makes it possible to generalize these theorems with
a coordinate-free language.
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1 Introduction
The Newtonian formulation of the laws of Mechanics leaves many ques-
tions unresolved, in addition to the fact that its treatment is complicated
when dealing with forces and accelerations (or moments), which are vec-
tor magnitudes. In the 19th century, Lagrange and Hamilton, along with
other researchers, developed alternative formulations of Classical Mechan-
ics, known as Analytical or Rational Mechanics, using mathematical pro-
cedures known today as variational analysis and functional calculus.

2 Action and lagrangians
In Lagrange’s formulation, the fundamental object is the action integral
of a function, today called Lagrangian (or Lagrangian density in the ver-
sion of fields or continuous systems, although due to abuse of language,
Lagrangian density is still called Lagrangian). The action is

S(q) =

∫
M

Ldt (1)

The Lagrangian L is a mathematical function that depends on vari-
ables q(t) called generalized coordinates (which can be scalars, vectors, or
even tensors, spinors, etc.).

2.1 First order lagrangians, L = L(q, q̇)

For a Lagrangian that depends on the generalized coordinates and their
first-order time derivatives, one has:

δL(q, q̇) =
∂L

∂q
δq +

∂L

∂q̇
δq̇ (2)

Using Leibniz’s rule of derivation of a product, we can write this ex-
pression as follows:

δL(q, q̇) =
∂L

∂q
δq +

d

dt

(
∂L

∂q̇
δq

)
−

(
d

dt

∂L

∂q̇

)
δq (3)

or rearranging the terms

δL(q, q̇) = E1(L)δq +
d

dt
(pδq) . (4)

where we have defined the generalized moment

p =
∂L

∂q̇
(5)

and the Euler operator of the first order

E1(L(q, q̇)) =
∂L

∂q
− d

dt

∂L

∂q̇
(6)

The motion of a body or system defined by generalized coordinates
is that which minimizes the action (more generally, extremizes it), and
δS = 0 generally implies that δL = 0 for arbitrary variations of δwhat.
In fact, the minimization of the action is invariant except for boundary
terms, that is, the minimization of the action (or extremization) implies
that a total derivative term can be added to the Lagrangian, which only
contributes with a constant and does not affect the equations of motion.
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The fact that the Lagrangian is quasi-invariant (invariant except for a
total time derivative) is usually expressed as the gauge principle

δL =
dΛ

dt
(7)

and then the global variation of the first-order Lagrangian can be written

δL =
∂L

∂q
δq −

(
d

dt

∂L

∂q̇

)
δq +

d

dt

(
∂L

∂q̇
δq

)
= E1(L) +

d

dt

(
∂L

∂q̇
δq

)
(8)

δL = E1(L) +
d

dt
(pδq) =

dΛ

dt
(9)

o bien

δL = E1(L)δq +
d

dt

(
∂L

∂q̇
δq

)
= E1(L) +

d

dt
(pδq − Λ) (10)

The criticality of the action and the Lagrangian of the first order,
implies the fulfillment of the Euler-Lagrange equations:

E1(L) =
∂L

∂q
− d

dt

∂L

∂q̇
= 0 (11)

Furthermore, the boundary term is the conserved quantity or Noether
charge under arbitrary δq symmetry transformations (as we will see later,
it is one of Noether’s theorems):

C =

(
∂L

∂q̇
δq − Λ

)
The funny thing about all of this is that we can generalize it to higher-

order and arbitrary-high-order derivatives. Or even consider more general
transformations, for example some that include the change of the temporal
coordinates in addition to the fields in the spatial coordinates.

2.2 Second order lagrangians, L(q, q̇, q̈)
Now suppose that L = L(q, q̇, q̈), which corresponds to a Lagrangian that
depends on generalized position, velocity, and acceleration. The variation
of the Lagrangian is now

δL(q, q̇, q̈) =
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂q̈
δq̈ (12)

or, again using the Leibniz product rule

δL(q, q̇, q̈) =

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq +

d

dt

(
∂L

∂q̇
δq

)
+

∂L

∂q̈
δq̈ (13)

For the last term on the right-hand side, we apply the Leibniz rule
twice again to eliminate the temporal dependence of the variations as far
as we can:

∂L

∂q̈
δq̈ =

d

dt

(
∂L

∂q̈
δq̇

)
−

[
d

dt

(
d

dt

∂L

∂q̈
δq̇

)
− d2

dt2
∂L

∂q̇
δq

]
(14)

Using the same type of rearrangement as with the first-order La-
grangian, we now obtain the total variation of the Lagrangian

δL =

(
∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈

)
δq +

d

dt

[(
∂L

∂q̇
δq − d

dt

∂L

∂q̈

)
δq +

∂L

∂q̈
δq̇

]
(15)
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This expression can be succinctly rewritten as

δL = E2(L(q, q̇, q̈)δq +
d

dt
[E1(L(q̇, q̈))δq + E0(L(q̈))δq̇] (16)

and where we have defined the Euler operators

E2(L(q, q̇, q̈) =
∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
(17)

E1(L(q̇, q̈)) =
∂L

∂q̇
δq − d

dt

∂L

∂q̈
(18)

E0(L(q̈) =
∂L

∂q̈
(19)

The extremization of the action (invariance) and the quasi-invariance
of the Lagrangian generate the equations of motion

E2 =
∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
= 0 (20)

and the conservation of the Noether charge at the boundary

C =

(
∂L

∂q̇
− d

dt

∂L

∂q̈
− Λ

)
δq +

∂L

∂q̈
δq̇ (21)

2.3 Third order lagrangians, L = L(q, q̇, q̈,
...
q )

It is left as an exercise for the interested reader and fascinated by these
lines, to calculate the details (by brute force of derivation via Leibniz’s
rule) for the Lagrangian whose variation is

δL = δL(q, q̇, q̈,
...
q ) =

∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂q̈
δq̈ +

∂L

∂
...
q
δ
...
q (22)

Obviously, the problem is to rewrite the term
∂L

∂
...
q
δ
...
q (23)

as follows

∂L

∂
...
q
δ
...
q =

d

dt

(
∂L

∂
...
q
δq̈

)
− d

dt

(
d

dt

∂L

∂
...
q
δq̇

)
+

d

dt

(
d2

dt2
∂L

∂
...
q
δq

)
− d3

dt3
∂L

∂
...
q
δq

(24)
Obviously, the problem is to rewrite the term

δL = E3(L(q, q̇, q̈,
...
q ))δq +

dC

dt
(25)

where we now have, by virtue of the extremization of the action, and
the quasi-invariance of the Lagrangian, respectively, the equations of mo-
tion and the Noether charge of the boundary term of the action for the
Lagrangian:

E3(L(q, q̇, q̈,
...
q )) =

∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
− d3

dt3
∂L

∂
...
q

= 0 (26)

C = E2(L(q̇, q̈))δq + E1(L(q̈,
...
q ))δq̇ + E0(L(

...
q ))δq̈ (27)

and where the Noether charge for the third-order Lagrangian C can also
be rewritten as

C =

(
∂L

∂q̇
− d

dt

∂L

∂q̈
+

d2

dt2
∂L

∂
...
q

)
δq +

(
∂L

∂q̈
− d

dt

∂L

∂
...
q

)
δq̇ +

∂L

∂
...
q
δq̈ (28)
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2.4 nth order lagrangians, L = L(q,Dq,D2q, . . . , Dnq)

Applying induction, we can obtain the Euler-Lagrange equations of nth
order (order n), just be careful notation of the derivatives. D = d/dt,
D2 = d2/dt2, . . ., Dn = dn/dtn are the time derivatives of order 1 to
order n (generally D0f = 1f = f . It is not difficult to deduce the following
inductively:

δL = En(L(q,Dq, . . . ,Dnq))δq +
dC

dt
(29)

where we now have the Euler-Lagrange equations and the Noether charge

En(L) =

n∑
j=0

Dj ∂L

∂Djq
= 0 (30)

C =

n∑
k=0

EkδD
n−k−1q − Λδq (31)

either

C =

(
∂L

∂Dq
−D

∂L

∂D2q
+D2 ∂L

∂D3q
− · · · − Λ

)
δq+

+

(
∂L

∂D2q
−D

∂L

∂D3q
+ · · ·

)
δDq + · · ·+ ∂L

∂Dnq
δDn−1q

3 Fields and lagrangian densities
The previous case can be generalized when we pass from discrete coordi-
nates of particles q(t) to fields in a certain manifold (in physics, generally
space-time, although this is not always the only manifold studied). A field
ϕ(x) = ϕ(xµ) depends on the coordinates xµ of the space-time manifold.
The Lagrangian L becomes a Lagrangian density L, and the action is
defined analogously on that manifold

S =

∫
M

L =

∫
M

L(ϕ, ∂ϕ, ∂2ϕ, . . . , ∂sϕ)dDx (32)

where D is now the dimension (not to be confused with the D used for
the time derivative earlier). The time derivative is now just one of the
partial derivatives ∂ = ∂µ. Mutatis mutandis, if we change q(t) to ϕ(x),
time derivatives to partial derivatives, all of the above can be generalized.
Now the charge is a current J (the Noether charge would essentially be
the volume integral of the time component of the current) which will be
conserved. This is because the continuity equation has the form

∂µJ
µ = 0 = ∂0J

0 + ∂iJ
i = ∂tQ+ ∂iJ

i (33)
from where

Q = −
∫

∂iJ
idt (34)

so Q will be conserved when said integral vanishes. The quasi-invariance
condition of the Lagrangian now becomes a quasi-invariance of a diver-
gence, that is, L can change as a gauge transformation to a partial deriva-
tive of a quantity λµ holding the integral action invariant, since ∂µλ

µ on
the edges or border will not generally contribute to the classical equations
of motion.
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3.1 First order lagrangian densities
Equations of motion:

E1(L) =
∂L
∂ϕ

− ∂µ
∂L

∂∂µϕ
= 0 (35)

Noether current:
Jµ =

(
∂L

∂∂µϕ
δϕ− λµ

)
(36)

3.2 Second order lagrangian densities
Equations of motion:

E2(L) =
∂L
∂ϕ

− ∂µ
∂L

∂∂µϕ
+ ∂µ∂ν

∂L
∂∂µ∂νϕ

= 0 (37)

Noether current:

Jµ =

(
∂L

∂∂µϕ
− ∂ν

∂L
∂∂µ∂νϕ

− λµ

)
δϕ+

∂L
∂∂µ∂νϕ

δ∂νϕ (38)

3.3 Third order lagrangian densities
To simplify the notation, we will indicate the successive derivatives by
indices. Thus, ∂µ∂νϕ = ϕµν , ... ∂sϕ = ∂µ1 · · · ∂µsϕ = ϕµ1···µs . With this
notation, we write the equations of motion and the Noether current as
follows.

Equations of motion:

E3(L) =
∂L
∂ϕ

− ∂µ
∂L
∂ϕµ

+ ∂µν
∂L
∂ϕµν

− ∂µ1µ2µ3

∂L
∂ϕµ1µ2µ3

= 0 (39)

Noether current:

Jσ =

(
∂L
∂ϕσ

− ∂µ
∂L
∂ϕµσ

+ ∂µ∂ν
∂L

∂ϕµνσ
− λσ

)
δϕ+

+

(
∂L
∂ϕσν

− ∂µ
∂L

∂ϕµνσ

)
δϕν +

∂L
∂ϕµνσ

δϕµν

3.4 nth order lagrangian densities
Equations of motion:

δL = En(L(ϕ,Dϕ, . . . ,Dnϕ))δϕ+ ∂µλ
µ (40)

and now the Euler-Lagrange equations for the field and the Noether cur-
rent take the functional forms

En(L) =
n∑

j=0

Dj ∂L
∂Djϕ

= 0 (41)

J =

n∑
k=0

EkδD
n−k−1ϕ− λδϕ (42)

equivalently
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J =

(
∂L
∂Dϕ

−D
∂L

∂D2ϕ
+D2 ∂L

∂D3ϕ
− · · · − λ

)
δϕ+

+

(
∂L

∂D2ϕ
−D

∂L
∂D3ϕ

+ · · ·
)
δDϕ+ · · ·+ ∂L

∂Dnϕ
δDn−1ϕ

4 The 2 theorems

4.1 Mathematical background
Let n be fields ϕi(x), i = 1, . . . , n, which depend on D variables or coordi-
nates x = xµ = (x1, x2, . . . , xD). The first-order Euler-Lagrange equations
(the discussion can be extended to any order of derivatives by using jet
bundles) are written

Ei(φ) =
∂L
∂ϕi

− ∂µ
∂L

∂(∂µϕi)
= 0 (43)

For the action integral

S =

∫
M

L(x;ϕi, ∂µϕ
i)dDx (44)

coordinate transformations and fields are defined:

xµ → x′µ = xµ + δxµ (45)

ϕi(x) → ϕ′i(x′) = ϕi(x) + δϕi = ϕi(x) + δϕi + ∂µϕ
iδxµ (46)

which are infinitesimal transformations of the quantities xµ, ϕi. At the
lowest order, the action changes

δS =

∫
M

L(x′, ϕ′(x′), ∂ϕ′(x′))dDx′ −
∫
M

L(x, ϕ(x), ∂ϕ)dDx (47)

to provide

δS =

∫
M

[
Ei(ϕ)δϕ

i + ∂µB
µ(x, ϕ, ∂ϕ, δx, δϕ)

]
(48)

and where Bµ, µ = 1, 2, . . . , D are linear functions on δxµ, δϕi. With
these expressions, Noether stated her two theorems.

4.2 Theorem 1 (Noether, r-parametric groups)
The link between symmetries (invariances) and conservation laws is the
content of Noether’s first theorem. The importance of Noether’s theorem
resides in the connection of symmetries (or laws of invariance) with the
conservation laws. Thus, translation invariance of the Lagrangian implies
conservation of momentum, time translation invariance implies conserva-
tion of energy (more generally, spatiotemporal translation invariance im-
plies conservation of the so-called energy-momentum-momentum tensor),
rotation invariance implies conservation of angular momentum (usually a
bivector, but dual to a vector in 3d), boost invariance implies that the
center of mass (or center of energy in relativistic version) moves with uni-
form motion ,...And more generally, Noether’s first theorem indicates that
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the invariance of the action (quasi-invariance of the Lagrangian) against a
certain group of transformations (fixing the type of group at a mathemat-
ical level is important, generally continuous groups are preferred, usually
Lie-Backlünd, but they can be more esoteric groups such as the Poincaré
group, the conformal group, the gr de Sitter type, and several others).

Thus, Noether’s first theorem establishes a one-to-one correspondence
(Noether proved this) and the converse, that a conservation law is associ-
ated with a symmetry or invariance, at the same time that a symmetry or
invariance is associated with a conserved quantity. even if it is not triv-
ial. The conservation laws of continuous groups are additive laws, while
discrete symmetries obey multiplicative conservation laws (for example,
invariance under time reversal, invariance under the change of particles
by antiparticles, or invariance under specular reflection with the so-called
symmetries T, C and P, and are also symmetries in Physics in a combined
way, but apparently not separately).

In short, Noether’s first theorem states that conservation laws imply
invariance and vice versa. If the action integral is invariant for an r-
parametric Lie group (Lie-Backlünd today):

xµ → x′µ = fµ(x, φ; ε1, . . . , εr) (49)

ϕi(x) → ϕ′i(x′) = F i(x, φ; ε1, . . . , εr) (50)

where the values

ε = ερ = 0 = (0, . . . , 0) = (ε1, . . . , εr) (51)

with ρ = 1, . . . , r give the identity transformation. So, for the parameter-
ization

δxµ = Xµ
ρ(x, ϕ)ε

ρ, |ε| << 1 (52)

δϕi = Zi
ρ(x, ϕ)ε

ρ (53)

it is shown, as Noether did, that there exist r conserved currents

Jµ
ρ = Tµ

νX
ν
ρ − ∂L

∂(∂µϕ)
Zi

ρ, ρ = 1, 2, . . . , r (54)

with the energy-momentum-impulse tensor given by

Tµ
ν =

∂L
∂(∂µϕi)

∂νϕ
i − δµνL (55)

114 / 5.000 Resultados de traducción Resultado de traducción for the
solutions ϕi(x) of the equations of motion

Ei(ϕ) = 0

of a first-order Lagrangian.
Example 1. Space-time translations. Coordinate transformations

xµ → xµ + εµδϕi = 0 (56)

produce the currents

Jµ
ν = Tµ

ν , µ, ν = 1, 2, 3, . . . , D (57)
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Example 2. Internal symmetries. Let be the internal transformations
of the fields

δxµ = 0 (58)

ϕ′i(x) = Y i
p (ε

1, ε2, . . . , εr)ϕp(x) (59)

Then the following currents are conserved assuming valid equations of
motion Ei(ϕ) = 0.

Jµ
ρ = − ∂L

∂(∂µ(ϕi)
Zi

ρ, ρ = 1, 2, . . . , r (60)

The converse also holds: if there are ρ conserved quantities, then there
are groups of transformations that leave the action invariant.

4.3 Theorem 2 (Noether, ∞-parametric groups or
gauge transformations)
Noether’s second theorem connects differential identities (dependencies of
the equations of motion) with gauge invariance. Noether’s second theorem
is much more abstract and subtle, and generally does not have apprecia-
ble consequences like the first. If the invariance group is replaced by an
infinite-dimensional group and the transformations are gauges of a given
set of functions up to a given order in the derivatives, Noether proved that
not all equations of motion are independent and there is redundancy or
dependency between them. . The set of these relations, generally in the
form of identities in the form of differential operators, is called Bianchi
identities (although this term is often confused with the Bianchi identi-
ties of certain tensors that may or may not be related to this theorem).
However, in modern jargon these relationships between equations of mo-
tion in the presence of groups of transformations that depend on arbitrary
functions up to a certain order in the derivatives are often called Noether
identities.

The mathematical statement of Noether’s second theorem is more com-
plicated, and a somewhat archaic version of it is included in the following
article(section). The most modern versions use shapes and tensors, plus
the fancy jet bundle language of a Lagrangian manifold.

In short, Noether’s second theorem shows that invariance under an
infinitedimensional group of “gauge” transformations implies functional
dependencies (redundancies, differential identities) between the equations
of motion and vice versa.

If the action integral is invariant under a gauge group (infinite-dimensional),
the elements of the group depend on s-smooth or regular functions ξρ(x),
ρ = 1, . . . , s and their derivatives up to order rρ, such that the variations
are

δϕj =

s∑
ρ=1

σ1,...,σD=rρ∑
σ1,...,σD=0

(εj(x, ϕ; ∂ϕ)ρ,σ1,...,σD

∂σ1+···+σD

∂(x1)σ1 · · · ∂(xD)σD
ξρ(x)

(61)
and there exist s-identities called Noether identities (or Bianchi identities)
given by the expressions
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σ1+···+σD=rρ∑
σ1,...,σD=0

(−1)σ1+···+σD
∂σ1+···+σD

∂(x1)σ1 · · · ∂(xD)σD
(ε(x, ϕ, ∂ϕ)ρ,σ1,...,σDEi(ϕ)) = 0

(62)
where ρ = 1, . . . , s, and which give relationships or dependencies between
the n-Euler-Lagrange equations. The proof uses integration and the fact
that one can choose ξρ = 0 and also that we can write

∂σ1+···+σD

∂(x1)σ1 · · · ∂(xD)σD
ξρ = 0 (63)

on the border or edge of M , topologically denoted by ∂M .

Example 1. Classical electrodynamics. In classical electrodynamics
one has to

Eµ(A) = ∂νFνµ (64)

y

Fνµ = ∂νAµ − ∂µAν (65)

The invariant action reads

S(A,F ) = −1

4

∫
d4xFµνF

µν (66)

Under gauge transformations

δAµ = ∂µξ(x) (67)

we deduce

∂µEµ(A) = 0 (68)

which is an obvious result from the antisymmetry of F, Fµν = −Fµν .

Example 2. General Relativity. In General Relativity (RG), we have
the nonlinear field equations

Eµν(g) = Rµν − 1

2
gµνR = Gµν = κTµν (69)

and where Rµν is the Ricci tensor, R = gµνRµν is the scalar of curvature.
The invariance of the Einstein-Hilbert integral action

SEH =

∫
d4x

√
−gR (70)

under diffeomorphisms or general coordinate transformations parameter-
ized in the form

δxµ = Ξµ(x) (71)

δgµν = DµΞν +DνΞµ (72)

where Dµ is the covariant derivative, gives 4 Bianchi identities (Noether
identities, dependencies) given by

DµEµν(g) = 0 (73)
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which is obvious from the symmetry of Gµν and expected from the conser-
vation of the energy-momentum-momentum tensor Tµν . These relation-
ships were discovered by Hilbert and discussed by him in his first paper
on general relativity in 1915.

5 Algebra and invariant theory
Emmy Noether(1882-1935) earned her doctorate (Ph.D) in Mathematics
in 1907 at the University of Erlangen. Another of Noether’s facets was the
theory of algebraic invariants. The theory of algebraic invariants studies
multilinear forms with the formal expression

FD,p(y1, . . . , yn; ε) =

n∑
i1,...,iD=1

ai1i2···iD (yi1)
αi1 · · · (yiD )αiD (74)

where αi1 + · · · + αiD = p. If one passes from variables yj to variables
xi by linear transformations xi = Cijyj , |Cij | ≠ 0, and we insert these
relations in the preceding formulae, we hope to find a new form of the
same type

GD,p(x; b) = FD,p [y(x; c); a] (75)

where the coefficients bj1···jD are functions of the coefficients aj1···jD through
the matrix of elements Cij . The main question of the theory of algebraic
invariants is: which algebraic functions f(a) of the coefficients aj1···jD are
invariant under linear transformations, such that the relation

f(b) = |Cij |gf(a) (76)

where g is a rational number? It turns out that there is a deep connection
between algebraic invariants and differential invariants, which was discov-
ered as early as the 19th century. Riemann’s own geometry, essential in
the General Theory of Relativity, uses differential invariants of the type

f(x, dx) = gij(x)dx
idxj (77)

although more complicated invariants (other geometries) could also be
studied in principle, of the type

f(x, dx) = gi1i2···ipdx
i1 · · · dxip (78)

which corresponds to the so-called Finsler geometries.
Noether’s theorems are relevant in the study of the movement of cen-

tral forces of the inverse square type (Kepler’s problem, with non-trivial
hidden symmetry), the study of asymmetric tops in more dimensions. For
example, it can be generalized to the denominated group SO(n) the usual
group SO(3) of a body or rigid top with Euler equations (do not confuse
these equations with the Euler-Lagrangre equations):

dJB
i

dt
+

n∑
j,k=1

Cijkω
jJkB = MB

i (79)

with i = 1, 2, . . . , n. In addition, it also has application in (super)string
theories, Quantum Mechanics, Quantum Field Theories (QFT), solid state
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theories, even black hole theory (the Kerr black hole with mass and angu-
lar momentum has a constant of non-trivial motion called Carter’s con-
stant associated with a non-trivial symmetry of the black hole, called
Killing symmetry), Cosmology, or in the more human Science of the at-
mosphere in fluids (where quantities such as vorticity and enstrophy play
an important role in the nonlinear dynamics associated with them).

Noether’s theorems are so beautiful because of their generality and
the relevance of symmetry in the world and in the Universe. Although
they can be formulated today with a greater elegance, generalization,
abstraction and level of sophistication (perhaps I will write a third party
on this aspect), the essence remains the same:

• Continuous symmetries imply conservation laws, and vice versa.
Mathematically, it is expressed as continuity equations (fields) or
quantities whose time derivative is zero (in the case of particle sys-
tems).

• Gauge symmetries imply dependencies or functional relationships
between equations of motion of fields (particles), and vice versa.
Mathematically, it is expressed as identities between certain differ-
ential operators in ordinary type equations (particle systems) or in
partial derivatives (field theories).
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A Emmy Noether

Figure 1: Emmy Noether portrait in her youth.
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B Invariant variation problems

Figure 2: The first page of [6], a legendary paper and cult among theoretical
physicists.
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