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1 Introduction

One of the big issues of Standard Model (SM) is the origin of mass (OM).
Usually, the electroweak sector implements mass in the gauge and matter sector
through the well known Higgs mechanism. However, the Higgs mechanism is not
free of its own problems. It is quite hard to assume that the same mechanism can
provide the precise mass and couplings to every quark and lepton. Neutrinos,
originally massless in the old-fashioned SM, have been proved to be massive.
The phenomenon of neutrino mixing , a hint of beyond the SM physics(BSM),
has been confirmed and established it, through the design and performing of
different nice neutrino oscillation experiments in the last 20 years( firstly from
solar neutrinos). The nature of the tiny neutrino masses in comparison with
the remaining SM particles is obscure. Never a small piece of matter has been
so puzzling, important and surprising, even mysterious. The little hierarchy
problem in the SM is simply why neutrinos are lighter than the rest of subatomic
particles. The SM can not answer that in a self-consistent way. If one applies
the same Higgs mechanism to neutrinos than the one that is applied to quarks
and massive gauge bosons, one obtains that their Yukawa couplings would be
surprisingly small, many orders of magnitudes than the others. Thus, the SM
with massive neutrinos is unnatural 1.

The common, somewhat minimal, solution is to postulate that the origin of
neutrino mass is different and some new mechanism has to be added to com-
plete the global view. This new mechanism is usually argued to come from
new physics (NP). This paper is devoted to the review of the most popular
(and somewhat natural) neutrino mass generation mechanism the seesaw, and
the physics behind of it, the seesawlogy2(SEE). It is organized as follows: in
section 2, we review the main concepts and formulae of basic seesaws; next,
in section 3 we study other kind of no so simple seesaws, usually with a more
complex structure; in section 4, we discuss the some generalized seesaws called
multiple seesaws; then, in section 5, we study how some kind of seesaw arises
in theories with extra dimensions, and finally, we summarize and comment the
some important key points relative to the the seesaws and their associated phe-
nomenology in the conclusion, section 6.

1
In the sense of ’t Hooft’s naturalness,i.e., at any energy scale µ, a set of parameters,

αi(µ) describing a system can be small (natural), iff, in the limit αi(µ) → 0 for each of these
parameters, the system exhibits an enhanced symmetry.

2
Please, do not confuse the term with Sexology!

1



2 Basic seesawlogy

The elementary idea behind the seesaw technology (seesawlogy) is to generate
Weinberg’s dimension-5 operator O5 = gLΦLΦ, where L represent a lepton
doublet, using some tree-level heavy-state exchange particle that varies in the
particular kind of the seesaw gadget implementation. Generally, then:

• Seesaw generates some Weinberg’s dimension-5 operator O5, like the one
above.

• The strength g is usually small. This is due to lepton number violation at
certain high energy scale.

• The high energy scale, say Λs, can be lowered, though, assuming Dirac
Yukawa couplings are small.

• The most general seesaw gadget is is through a set of n lefthanded (LH)
neutrinos νL plus any number m of righthanded (RH) neutrinos νR written
as Majorana particles in such a way that νR = νcL.

• Using a basis (νL, ν
c
L) we obtain what we call the general (n+m)×(n+m)

SEE matrix (SEX):

Mν =

(
ML MD

MT
D MR

)
(1)

Here, ML is a SU(2) triplet, MD is a SU(2) doublet and MR a SU(2)
singlet. Every basic seesaw has a realization in terms of some kind of
seesalogy matrix.

We have now several important particular cases to study, depending on the
values that block matrices at (1) we select.

2.1 Type I

This realization correspond to the following matrix pieces:

• ML = 0.

• MD is a (n×m) Dirac mass matrix.

• MN is a (m×m) Majorana mass matrix.

• Type I SEE lagrangian is given by ( up to numerical prefactors)

LIS = YDiracij l̄Li
φ̃νRi

+MNij
ν̄Ri

νcRj
(2)

with φ = (φ+, φ0)T being the SM scalar doublet, and φ̃ = σ2φσ2. More-

over,
〈
φ0
〉

= v2 is the vacuum expectation value (vev) and we write

MD = YDv2.

Now, the SEX Mν is, generally, symmetric and complex. It can be diagonalized
by a unitary transformation matrix (n+m)×(n+m) so UTMU = diag(mi,Mj),
providing us n light mass eigenstates (eigenvalues mi, i = 1, ..., n) and m heavy
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eigenstates (eigenvalues Mj , j = 1, ...,m). The effective light n × n neutrino
mass submatrix will be after diagonalization:

mν = −MDM
−1
N MT

D (3)

This is the basic matrix structure relationship for type I seesaw. Usually one
gets commonly, if MD ∼ 100GeV,and MN = MR ∼ 1016 ∼ MGUT , i.e.,
plugging these values in the previous formula we obtain a tipically small LH
neutrino mass about mν ∼ meV. The main lecture is that in order to get a
small neutrino mass, we need either a very small Yukawa coupling or a very
large isosinglet RH neutrino mass.

The general phenomenology of this seesaw can substancially vary. In or-
der to get, for instance, a TeV RH neutrino, one is forced to tune the Yukawa
coupling to an astonishing tiny value, typically YD ∼ 10−5 − 10−6. The re-
sult is that neutrino CS would be unobservable ( at least in LHC or similar
colliders). However, some more elaborated type I models prevent this to hap-
pen including new particles, mainly through extra intermediate gauge bosons
w′, Z ′. This type I modified models are usually common in left-right (LR) sym-
metric models or some Gran Unified Theories (GUT) with SO(10) or E6 gauge
symmetries, motivated due to the fact we can not identify the seesaw funda-
mental scale with Planck scale. Supposing the SM holds up to Planck scale
with this kind of seesaw would mean a microelectronvolt neutrino mass, but we
do know from neutrino oscillation experiments that the difference mass squared
are well above the microelectronvolt scale. Therefore, with additional gauge
bosons, RH neutrinos would be created by reactions qq̄′ → W ′± → l±N or
qq̄ → Z ′0 → NN(or νN). Thus, searching for heavy neutrino decay modes
is the usual technique that has to be accomplished in the collider. Note, that
the phenomenology of the model depends on the concrete form gauge symme-
try is implemented. In summary, we can say that in order to observe type I
seesaw at collider we need the RH neutrino mass scale to be around the TeV
scale or below and a strong enough Yukawa coupling. Some heavy neutrino
signals would hint in a clean way, e.g., in double W’ production and lepton
number violating processes like pp→W ′±W ′± → l±l±jj or the resonant chan-
nel pp→W ′± → l±N∗ → l±l±jj.

2.2 Type II

The model building of this alternative seesaw is different. One invokes the
following elements:

• A complex SU(2) triplet of (heavy) Higgs scalar bosons, usually repre-
sented as ∆ = (H++, H+, H0).

• Effective lagrangian SEE type II

LIIS = YLij
lTi ∆C−1lj (4)

where C stands for the charge conjugation operator and the SU(2) struc-
ture has been omitted. Indeed, the mass terms for this seesaw can be read
from the full lagrangian terms with the flavor SU(2) structure present:

LIIS = −Yν l
T
LCiσ2∆lL + µDH

T iσ2∆+H + h.c. (5)
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Moreover, we have also the minimal type II seesawlogy matrix made of a
scalar triplet:

∆ =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
(6)

• ML = YLv3, with v3 =
〈
H0
〉

the vev rising the neutral Higgs a mass. Re-

markably, one should remember that non-zero vev of SU(2) scalar triplet
has an effect on the ρ parameter in the SM, so we get a bound v3

<∼ 1GeV.

• In this class of seesaw, the role of seesawlogy matrix is played by the
Yukawa matrix Yν , a 3×3 complex and symmetric matrix, we also get the
total leptonic number broken by two units(∆L = 2) like the previous see-
saw and we have an interesting coupling constant µD in the effective scalar
potential. Minimization produces the vev value for ∆ v3 = µDv

2
2/
√

2M2
∆

and v2 is give as before.

Then, diagonalization of Yukawa coupling produces:

Mν =
√

2Yνv3 =
YνµDv

2
2

M2
∆

(7)

This seesawlogy matrix scenario is induced, then, by electroweak symmetry
breaking and its small scale is associated with a large mass M∆. Again, a juidi-
cious choice of Yukawa matrix elements can accomodate the present neutrino
mass phenomenology. From the experimental viewpoint, the most promising sig-
nature of this kind of seesawlogy matrix is, therefore, the doubly charged Higgs.
This is interesting, since this kind of models naturally give rise to M∆ = M

H
++ ,

and with suitable mass, reactions like H±± → l±l±,H±± → W±W±,H± →
W±Z or H+ → l+ν̄.

2.3 Type III

This last basic seesaw tool is similar to the type I. Type II model building seesaw
is given by the following recipe:

• We replace the RH neutrinos in type I seesaw by the neutral component
of an SU(2)L fermionic triplet called σ, with zero hypercharge ( YΣ = 0),
given by the matrix

Σ =

(
Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)
(8)

• Picking out m different fermion triplets, the minimal elements of seesaw
type III are coded into an effective lagrangian:

LIIIS = YDiracij φT Σ̄ciLj −
1

2
MΣij

Tr(Σ̄iΣ
c
j) + h.c. (9)

• Effective seesawlogy matrix, size (n+m)× (n+m), for type III seesaw is
given by:

Mν =

(
0 MD

MT
D MΣ

)
(10)
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Figure 1: The 3 basic seesaw mechanisms. a) Type I. On the left. Heavy
Majorana neutrino exchange. b) Type II. In the center. Heavy SU(2) scalar
triplet exchange. c) Type III. Heavy SU(2) fermion triplet exchange.

Diagonalization of seesawlogy matrix gives

mν = −MT
DM

−1
Σ MD (11)

As before, we also get MD = YDv2 and similar estimates for the small neutrino
masses, changing the RH neutrino by the fermion triplet. Neutrino masses are
explained, thus, by either a large isotriplet fermion mass MΣ or a tiny Yukawa
YD. The phenomenology of this seesawlogy matrix scheme is based on the
observation of the fermion triplet, generically referred as E± ≡ Σ±, N ≡ Σ0,
and their couplings to the SM fields. Some GUT arguments can make this
observation plausible in the TeV scale (specially some coming from SU(5) or
larger groups whose symmetry is broken into it). Interesting searches can use
the reactions qq̄ → Z∗/γ∗ → E+E−, qq̄′ → W ∗ → E±N . The kinematical and
branching ratios are very different from type II.

3 Combined seesaws

Different seesaw can be combined or the concept extended. This section explains
how to get bigges SEE schemes.

3.1 Type I+II

The lagrangian for this seesaw reads:

−Lm =
1

2
(νL N

c
R)

(
ML MD

MT
D MR

)(
νcL
NR

)
+ h.c. (12)

where MD = Yνv/
√

2, ML = Y∆v∆ and < H >= v/
√

2. Standard diagonaliza-
tion procedure gives:

Mν =

(
M̂ν 0

0 M̂N

)
(13)

If we consider a general 3+3 flavor example, M̂ν = diag(m1,m2,m3) and also
M̂N = diag(M1,M2,M3). In the so-called leading order approximation, the
leading order seesaw mass formula for I+II seesawlogy matrix type is:

mν = ML −MDM
−1
R MT

D (14)
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Type I and type II seesaw matrix formulae can be obtained as limit cases of
this combined case. Some further remarks:

• Both terms in the I+II formulae can be comparable in magnitude.

• If both terms are small, their values to the seesawlogy matrix may exper-
iment significant interference effects and make them impossible to distin-
guish between a II type and I+II type.

• If both terms are large, interference can be destructive. It is unnatural
since we obtain a small quantity from two big numbers. However, from
phenomenology this is interesting since it could provide some observable
signatures for the heavy Majorana neutrinos.

3.2 Double seesaw

A somewhat different seesaw structure in order to understand the small neu-
trino masses is got adding additional fermionic singlets to the SM. This is also
interesting in the context of GUT or left-right models. Consider the simple case
with one extra singlet( left-right or scalar under the gauge group, unlike the RH
neutrino!). Then we obtain a 9× 9 seesaw matrix structure as follows:

Mν =

 0 MD 0

MT
D 0 MS

0 MT
S µ

 (15)

The lagrangian, after adding 3 RH neutrinos, 3 singlets SR and one Higgs singlet
Φ follows:

Ldouble = l̄LYlHER + l̄LYνH̄NR + N̄ c
RYSΦSR +

1

2
S̄cLMµSR + h.c. (16)

The mass matrix term can be read from

−Lm =
1

2
(νL N

c
R S

c
R)

 0 MD 0

MT
D 0 MS

0 MT
S µ

 νcL
NR
SR

 (17)

and where MD = Yν < H >, and MS = YS < Φ >. The zero/null entries can
be justified in some models (like strings or GUTs) and, taking MS >> MD the
effective mass, after diagonalization, provides a light spectrum

mν = MDM
T

−1

S µM−1
S MT

D (18)

When µ >> MS the extra singlet decouples and show a mass structure mS =
MSµ

−1MT
S , and it can be seen as an effective RH neutrino mass ruling a type I

seesaw in the νL − ν
c
L sector. Then, this singlet can be used as a “phenomeno-

logical bridge” between the GUT scale and the B − L usual scale ( 3 orders
below the GUT scale in general). This double structure of the spectrum in the
sense it is doubly suppressed by singlet masses and its double interesting limits
justifies the name “double” seesaw. The inverse type I is a usual name for the
double seesaw too in some special parameter values. Setting µ = 0, the global
lepton number U(1)L is conserved and the neutrino are massless. Neutrino
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masses go to zero values, reflecting the restoration of global lepton number con-
servation. The heavy sector would be 3 pairs of pseudo-Dirac neutrinos, with
CP-conjugated Majorana components and tiny mass splittings aroung µ scale.
This particular model is very interesting since it satisfies the naturalness in the
sense of ’t Hooft.

3.3 Inverse type III

It is a inverse plus type III seesawlogy matrix combination. We use a (νL,Σ, S)
basis, and we find the matrix

Mν =

 0 MD 0

MT
D MΣ MS

0 MT
S µ

 (19)

Like the previous inverse seesaw, in the limit µ→ 0, the neutrino mass is small
and suppressed. The Dirac Yukuwa coupling strength may be adjusted to order
one, in contrast to the normal type III seesawlogy matrix. This mechanism has
some curious additional properties:

• The charged lepton mass read off from the lagrangian is:

Mlep =

(
Ml MD

0 MΣ

)
(20)

• After diagonalization of Mlep, size (n + m) × (n + m), the n × n cou-
pling matrix provide a neutral current (NC) lagrangian, and since the ma-
trix shows to be nonunitary, this violates the Glashow-Iliopoulos-Maiani
(GIM) mechanism and sizeable tree level flavor-changing neutral currents
appear in the charged lepton sector.

3.4 Linear seesaw

Other well known low-scale SEE variant is the so-called linear seesaw. It uses
to arise from SO(10) GUT and similar models. In the common (ν, νc, S) basis,
the seesawlogy matrix can be written as follows:

Mν =

 0 MD ML

MT
D 0 MS

MT
L MT

S 0

 (21)

The lepton number conservation is broken by the term MLνS, and the effective
light neutrino mass, after diagonalization, can be read from the next expression

Mν = MD(MLM
−1)T + (MLM

−1)MT
D (22)

This model also suffers the same effect than the one in the inverse seesaw. That
is, in the limit ML → 0, neutrino mass goes to zero and the theory exhibit
naturalness. The name linear is due to the fact that the mass dependence on
MD is linear and not quadratic, like other seesaw.
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4 Multiple seesaws

In ( libro 2011) and references therein, a big class of multiple seesaw models
were introduced. Here we review the basic concepts and facts, before introduce
the general formulae for multiple seesaws(MUSE):

• Main motivation: MUSEs try to satisfy both naturalness and testability
at TeV scale, in contrast with other basic seesaw. Usually, a terrible fine-
tuning is required to implement seesaw, so that the ratio MD/MR and the
Yukawa couplings can be all suitable for experimental observation, such
as new particles or symmetries. This fine-tuning between MD and MR is
aimed to be solved with MUSEs.

• Assuming a naive electroweak seesaw so that m ∼ (λΛEW )n+1/ΛnS , where
λ is a Yukawa coupling and n is an arbitrary integer larger than the unit,
without any fine-tuning, one easily guesses:

ΛS ∼ λ
n+1
n

[
ΛEW

100GeV

]n+1
n
[

0.1eV

mν

]1/n

10
2(n+6)

n GeV (23)

Thus, MUSEs provide a broad clase of parameter ranges in which a TeV
scale seesaw could be natural and testable.

• The most simple MUSE model at TeV scale is to to introduce some singlet
of fermions SinR and scalars Φn, with i = 1, 2, 3 and n = 1, 2, · · · . This
field content can be realized with the implementation of global U(1) ×
Z2N gauge symmetry leads to two large classes of MUSEs with nearest-
neighbours interaction matrix pattern. The first class owns an even num-
ber of SinR and Φn and corresponds to a straightforward extension of the
basic seesaw. The second class has an odd number of SinR and Φn, and it
is indeed a natural extension of the inverse seesaw.

• The phenomenological lagrangian giving rise to MUSEs is:

−Lν = l̄LYνH̃NR + N̄ c
RYS1

S1RΦ1 +
n∑
i=2

Sc(i−1)RYSi
SiRΦi +

+
1

2
ScnRMµSnR + h.c. (24)

Here Yν and YSi
are the 3x3 Yukawa coupling matrices, and Mµ is a

symmetric Majorana mass matrix. After spontaneous symmetry break-
ing(SSB), we get a 3(n + 2) × 3(n + 2) neutrino mass matrix M in the
flavor bases (νL, N

c
R, S

c
1R, ...S

c
nR) and their respective charge-conjugated

states, being

M =



0 MD 0 0 0 · · · 0

MT
D 0 MS1

0 0 · · · 0

0 MT
S1

0 MS2
0 · · · 0

0 0 MT
S2

0 · · ·
...

...
0 0 0 · · · · · · MSn−1

0
...

...
... · · · MT

Sn−1
0 MSn

0 0 0 · · · 0 MT
Sn

Mµ


(25)
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where we have defined MD = Yν < H > and MSi
= YSi

< Φi >,
∀i, i = 1, ..., n, and they are 3 × 3 matrices each of them. Note that
Yukawa terms exist only if |i − j| = 1,∀i, j = 0, 1, ..., n and that M can
be written in block-form before diagonalization as

M =

(
0 M̃D

M̃T
D M̃µ

)
(26)

with M̃D = (MD 0) a 3×3(n+1) and M̃µ a symmetric 3(n+1)×3(n+1)
mass matrix.

• General phenomenological features: non-unitary neutrino mixing
( in the submatrix boxes) and CP violation (novel effects due to non-
unitarity or enhanced CP-phases), collider signatures of heavy Majorana
neutrinos ( class A MUSEs preferred channel pp → l±α l

±
βX, i.e., the

dilepton mode; class B MUSEs, with Mµ << MEW , favourite channel

is pp → l±α l
±
β l
±
γ X, i.e., the trilepton mode and the mass spectrum of

heavy Majorana would consist on pairing phenomenon, showing nearly
degenerate masses than can be combined in the so-called pseudo-Dirac
particles).

• Dark matter particles. One or more of the heavy Majorana neutrinos
and gauge-singlet scalars in our MUSE could last almost forever, that is, it
could have a very long timelife and become a good DM candidate. It could
be fitted to some kind of weakly interacting massive particle (WIMP) to
build the cold DM we observe.

4.1 Class A

This MUSE is a genaralization of canonical SEE. MUSE A composition:

• Even number of gauge singlet fermion fields SinR, n = 2k, k = 1, 2, ...,.

• Even number of scalar fields Φn, n = 2k, k = 1, 2, ...,.

• Effective mass matrix of the 3 light Majorana neutrinos in the leading
approximation:

Mν = −MD

[
k∏
i=1

(
MT
S2i−1

)−1

MS2i

]
M−1
µ

[
k∏
i=1

(
MT
S2i−1

)−1

MS2i

]T
MT
D

(27)

When k = 0, we obviously recover the traditional SEEMν = −MT
DM

−1
R MD

if we set S0R = NR and Mµ = MR. Note that since the plugging of
MS2i

∼ MD ∼ O(ΛEW ) and MS2i−1
∼ Mµ ∼ O(ΛSEE), then Mν ∼

Λ
2(k+1)
EW /Λ2k+1

SEE , and hence we can effectively lower the usual SEE scale to
the TeV without lacking testability.

4.2 Class B

This MUSE is a genaralization of inverse seesaw. MUSE B composition:
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• Odd number of gauge singlet fermion fields SinR, n = 2k+ 1, k = 1, 2, ...,.

• Odd number of scalar fields Φn, n = 2k + 1, k = 1, 2, ...,.

• Effective mass matrix of the 3 light Majorana neutrinos in the leading
approximation:

Mν = MD

[
k∏
i=1

(
MT
S2i−1

)−1

MS2i

](
MT
S2k+1

)−1

×Mµ

(
MT
S2k+1

)−1
[
k∏
i=1

(
MT
S2i−1

)−1

MS2i

]T
MT
D (28)

When k = 0, we evidently recover the traditional inverse SEE but with
a low mass scale Mµ: Mν = MT

D(MT
S1

)−1Mµ(MT
S1

)−1MT
D . Remarkably,

if MS2i
∼ MD ∼ O(ΛEW ) and MS2i−1

∼ O(ΛSEE) hold ∀i, i = 1, 2, ...k,
the mass scale Mµ is not necessary to be at all as small as the inverse
SEE. Taking, for instance, n = 3, the double suppressed Mν provides
the ratios MD/MS1

∼ ΛEW /ΛSEE and MS2
/MS3

∼ ΛEW /ΛSEE , i.e.,
Mν ∼ 0.1eV results from Yν ∼ YS1

∼ YS2
∼ YS3

∼ O(1) and Mµ ∼ 1keV
at ΛSEE ∼ 1TeV.

5 Extra dimensional relatives

Several authors have introduced and studied a higher-dimensional cousin of the
seesaw and seesaw matrix. We consider a brane world theory with a 5d-bulk
(volume), where the SM particles are confined to the brane. We also introduce
3 SM singlet fermions Ψi with i = 1, 2, 3. Being singlets, they are not restricted
to the brane and can scape into the extra spacetime dimensions(EDs). The
action responsible for the neutrino masses is given by

S = Sbulk,5d + Sbrane,4d (29)

with

Sbulk,5d =

∫
d4xdy

[
iΨ /DΨ− 1

2

(
ΨcMRΨ + h.c.

)]
(30)

and

Sbrane,4d =

∫
y=0

d4x

[
− 1√

MS

νLm
cΨ− 1√

MS

νcLm
cΨ + h.c.

]
(31)

After a KK procedure on a circle with radius R, we get the mass matrix for the
n-th KK level

Mn =

(
MR n/R
n/R MR

)
(32)

and a Dirac mass term with mD = m/
√

(2πMSR). The KK tower is truncated
at the level N, and we write the mass matrix in the suitable KK basis, to obtain:
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M =



0 mD mD mD mD · · · mD

mT
D MR 0 0 0 · · · 0

mT
D 0 MR −

1

R
0 0 · · · 0

mT
D 0 0 MR +

1

R
· · ·

...
...

...
...

...
...

...
...

...

mT
D 0 0 0 0 MR −

N

R
0

mT
D 0 0 · · · 0 0 MR +

N

R


(33)

Note that MR is not assumed to be in the electroweak scale and its value is free.
We diagonalize the above matrix to get the light neutrino mass matrix:

mν ' mD

(
N∑

n=−N

1

MR + n/R

)
mT
D = mD

(
M−1
R +

N∑
n=1

2MR

M2
R − n

2/R2

)
mT
D

(34)
Already considered by some other references, the limit N → ∞ produces the
spectrum

mν ' mD

πR

tan(πRMR)
mT
D (35)

At level of the highest KK state, say N, the light neutrino mass becomes, ne-
glecting the influence of lower states,

mν ' mD

(
N∑

n=−N

1

MR +N/R

)
mT
D (36)

Then, irrespectively the value of MR, if MR << N/R, the spectrum get masses

that are suppressed by N/R, i.e., mν ' mDm
T
DR/N . Some further variants of

this model can be built in a similar fashion to get different mass dependences
on mD (here quadratic).

6 Conclusion and outlook

The seesaw has a very interesting an remarkable structure and its a remarkable
neutrino mass mechanism BSM. It gives a way to obtain small masses from
a high energy cut-off scale, yet to find or adjust. Neutrino oscillation experi-
ment hints that the seesaw fundamental scale is just a bit below of GUT scale,
although, as this review has shown and remembered, the nature and value of
that seesaw energy scale is highly model dependent: the seesawlogy matrix is
a mirror of the GUT/higher gauge-symmetry involved in the small neutrino
masses, the EW SSB and the particle content of the theory. Moreover, in spite
of seesaw is the more natural way to induce light masses on neutrino( or even
every particle using some universal seesaw), their realization in Nature is to
be proved yet. In order to test the way, if any, in which seesaw is present ex-
perimental hints on colliders in the line of this article, DM searches and other
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neutrino experiments(like those in neutrino telescopes, neutrino superbeams or
neutrino factories) will be pursued in present and future time. We live indeed
in an exciting experimental era and the discovery of sterile neutrino is going to
be, according to Mohapatra, a boost and most impactant event than the one
a hypothetical Higgs particle finding will provoke. Their time is just running
now.

12


	Introduction
	Basic seesawlogy
	Type I
	Type II
	Type III

	Combined seesaws
	Type I+II
	Double seesaw
	Inverse type III
	Linear seesaw

	Multiple seesaws
	Class A
	Class B

	Extra dimensional relatives
	Conclusion and outlook

