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Abstract

We review the Schwinger effect and present their main formulae
and its polylogarithmic closed form. We expose shortly the current
status of the experimental searches and revisit the main formulae,
concepts and the right interpretation of this non-perturbative effect
in 4d QED. The generalizations to lower and higher dimensional QED
formulae are also provided and discussed in terms of polylogarithms,
not done in the bibliography to our knowledge.

1 Introduction

The Schwinger’s mechanism or Schwinger effect is a non-perturbative
QED phenomenon. It is the spontaneous production of e+e− pairs in the
pressence of strong (usually constant) electric fields1. However, the Schwinger’s
mechanism is, yet, an untested or unseen, as far as we know, process in
Quantum Electrodynamics2(QED) in spite of the experimental effort that
have been done to observe and measure it.

The production of electron and positron pairs by the electromagnetic field
has a long story. Sauter [1] and Heisenberg et al. [2] had studied the process
before the seminal paper by J. Schwinger [3], although they considered the
problem in a less formal and more rude formalism, calculating the tunneling
probability for the potential barrier generated by the electric field, a result
that is qualitatively correct. Its original interpretation is not.

∗e-mail: juanfrancisco.gonzalez1@educa.madrid.org
†alternative e-mail: hypertwistor@gmail.com
‡Department of Physics and Chemistry. IES Humanejos, Parla(Madrid) Spain.
1The concept, of course, can be generalized to general electromagnetic fields or even

the electroweak field, the strong field and the gravitational field.
2Hence, it is a predicted unobserved SM physical phenomenon.
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2 Schwinger’s effect calculations

2.1 Heuristic calculation

There is a beautiful straight-hand derivation of the qualitative formula using
elementary undergraduate physics. The work or energy to transport a charge
q to a distance 2λc where λc is the Compton’s wavelength is

Energy = W = qEd = qE2λc = 2E
ℏ
mc

(1)

where we used λc = ℏ/mv ≈ ℏ/mc for v ≈ c. Now, if we want to create a
pair of particles, they have energy

Epair = m
e
+c2 +m

e
−c2 = 2mc2 (2)

where we have supposed that m
e
+ = m−

e by CPT invariance. Now, to create
the pair, we should have at least the pair energy, so

W = Epair → 2qE
ℏ
mc

≥ 2mc2 (3)

E ≥ m2c3

qℏ
(4)

Action = S ≥ h

2
=

πm2c3

qE
(5)

In Quantum Mechanics, using the path integral approach, the transition
amplitude is essentially given by Z = const.e−S where S is the action, so
then the probability for the Schwinger effect, taking q = e will be

P ≈ (Amplitude) · e−
πm

2
c
3

qE ∝ e−π
Ec
E (6)

where we have defined the critical electric field for pair creation as Ec =
m2c3/qℏ ≈ 1018V m−1 if q is the (positron) elementary charge. Remark-
ably, we get the same qualitative result if we apply the probability for the
penetration depth in a barrier P ∝ e−λx, taking x = mc/ℏ and the depth
λ = mc2/qE, so λx = m2c3/qEℏ = Ec/E. Reinserting a constant factor π
in x we recover (6). We will use natural units ℏ = c = 1 in the next sections.

2.2 Formal calculation: approach 1(fermions)

In QFT we stuy the vacuum persistence amplitude

⟨0|0⟩J = ⟨0|0⟩A = eiSeff (7)
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where we used units with ℏ = 1, as it is conventional in QFT. The pair
production amplitude is

P ≃ 1− e−2ℑ(Seff ) ≈ 2ℑ(Seff ) (8)

where formally we define

Seff = log det
[
iγµ

(
∂µ − ieAµ

)
+m

]
(9)

The problem is shifted to the computation of the determinant and its loga-
rithm, above, and thus later to calculate the imaginary part of the effective
action Seff , i.e., ℑ(Seff ). That is what Schwinger calculated indeed in his
1951 paper. We now review the main steps of the problem. First, only
an additional remark about QFT: the persistence amplitude in vacuum is
essentially the probability of particle creation. Mathematically,

⟨0|0⟩J = | ⟨out|in⟩ |2 = 2ℑ(Seff ) ≈ ℑ(Seff ) = Prob.ofpart.creation

but
Probability

time × volume
≈ ℑ(L)

where L is the lagrangian density. In [3], Schwinger used the proper time
formalism to derive the full effective action in terms of the integral

∆L = − 1

8π2

∫ ∞

0

ds
1

s3
e−m

2
s

[
(es)2(E ·B)ℜ(cosh(esX))

ℑ(cos esX)

]
−1−2

3
(es)2F (10)

where the last two terms in the integrand function are due to renormalization,
and we defined X = 2(F + iG), G = E ·B and F = 1/2(B2 −E2). Now, we
have two interesting limits for the above integral: i) Pure magnetic field and
ii)Pure electric field. The key point comes from the latter for the common
Schwinger effect, as Schwinger realized taking B → iE that

∆L = − 1

8π2

∫ ∞

0

ds
1

s3
e−m

2
s

(
seE cot(eEs)− 1 +

1

3
(eEs)2

)
(11)

We note that the integral has singularities whenever

s = sn =
nπ

eE
, n = 1, 2, 3, . . . ,∞

Therefore, using the residual theorem of complex variables and calculus, the
integral can be evaluated considering a path above the real axis, to get an
imaginary part ( from the residues) equal to:

2ℑ(L) = 1

4π

∞∑
n=1

s−2
n e−m

2
sn =

1

4π

∞∑
n=1

(
eE

nπ

)2

e−m
2 nπ
eE
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so then

2ℑ(L) = 1

4π3

∞∑
n=1

(eE)2e−
m

2
nπ

eE
1

n2

and finally we obtain

ℑ(L) = (eE)2

8π3

∞∑
n=1

1

n2 e
−m

2
nπ

eE =
dP [γ + E(field)] → e+e−

dV dT
(12)

We can recover the heuristic (classical) result truncating the series at n = 1
and getting the amplitude

A = V · T (eE)2

8π3

Moreover, since n(e+e−) = 2πℑ(L), then

n(e+e−) = V · T e2E2

4π2

∞∑
n=1

1

n2 e
−m

2
nπ

eE = V · T αE2

4π2

∞∑
n=1

1

n2 e
−m

2
nπ

eE (13)

where the fine structure constant is α = e2/ℏc = e2, using in the last step nat-
ural units. Interesingly, the formula can be easily extended to other particles
and charges with the simple rescaling of mass or charge, i.e., e.g., making
e → Ze, with Z the (integer) multiple of the elementary electron charge.
Also, if the particle is massless ( m=0), we obtain a nice formula in terms of
the Riemann zeta function value:

n(e+e−) = V · T αE2

4π2 ζ(2), ζ(2) =
∞∑
n=1

1

n2 (14)

Important remark: the dependence of ℑ(L) in E is nonperturbative, through
an exponential non-trivial function and we have included the influence of spin
in the calculation through the counting factor 2 in the effective action.

2.3 Formal calculation: approach 2(bosons)

In this section, we calculate formally the Schwinger effect for bosons, al-
though we will use the Bogoliubov transformations in order to be more pre-
cise and to prepare the path for further generalizations.

We consider a Klein-Gordon(KG) massive and spinless field in a bos of

volume V = L3 coupled with an external source ( a force f⃗(t)). The KG
field is equivalent to a Hamiltonian system formed by an infinite number of
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harmonic oscillators with time-dependent frequencies. The mode equations
read

ξ′′k + ω2
kξ = 0, k ∈ Z (15)

and where we define

ω2
k =

∣∣∣∣2πk⃗L + ef⃗

∣∣∣∣2 +m2

The equation (15) can not be solved in closed general form, so we search
for solutions that satisfy the conditions limt→±∞ ωk(t) = ωk,±t, and they
are called asymptotically free particles, also sometimes called quasiparticles.
Then (15) admits solutions:

ξin,⃗k(t) = αkξout,k(t) + βkξ
∗
out,k(t) (16)

with the definitions of the quantum operators

aout,k = αkain,k + β∗
ka

+
in,k

Let us define |nk⟩in = |nk⟩ to be the in-state containing n particles in the
k-mode and |nk⟩out = |nk) the out-state containing n particles in the k-mode.
Then, as it is well known, cf. eg. [4],

|0k⟩ = c̃k

∞∑
n=0

(
β∗
k

α∗
k

)
|nk) = c̃k

∞∑
n=0

(
β∗
k

α∗
k

)
|nk⟩out (17)

|0k) = ck

∞∑
n=0

(
−β∗

k

αk

)
|nk⟩ = ck

∞∑
n=0

(
−β∗

k

αk

)
|nk⟩in (18)

where we have the relationships

|c̃k|2 = |ck|2 =
1

|αk|2
(19)

From these equations, we can see that the probability that a particle in the
k-mode is produced will be given by the transition amplitude squared:

|(nk |0k⟩ |2 =
|βk|2n(

1 + |βk|2
)n+1 (20)

Then, the average number of particles in the k-mode would be

⟨0k| a+out,kaout,k |0k⟩ = |βk|2 (21)
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Then, formally

P =
∏
k

(
1 + |βk|2

)−1
= exp

[
−
∑
k

log
(
1 + |βk|2

)]
=

exp

[
−
∑
k

∞∑
n=1

(−1)n+1

n
|βk|2n

]
(22)

where we used the expansion log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn. Equation (22)

gives the probability for the vacuum state to be unchanged. In fact, from
equation (22) we get

|out ⟨0|0⟩in |
2 = exp

[
−
∑

log(1 +Nk)
]
= exp

[
−
∑
k

∞∑
n=1

(−1)n+1

n
Nn−pairs

k

]
(23)

or

|out ⟨0|0⟩in |
2 = exp

[
−2TL3E2α

8π3ℏ

∞∑
n=1

(−1)n+1

n2 exp

(
−nπm2c4

ℏceE

)]
(24)

and recall again that the critical field is defined as Ec = m2c3/qℏ. The
equation (24) is the Schwinger formula for bosons.

3 The meaning of Schwinger’s formula

In spite of its importance and being one of the most cited papers in Physics,
the new and reborn interest in the mechanism must confront some miscon-
ceptions. The main one is the interpretation of Schwinger’s formula itself.
It is often unknown for non-experts in the field. As several authors have
pointed out and remarked, Schwinger’s interpretation is flawed ( see, e.g.,
[5, 6, 7, 8, 9]. Here, we will follow [5]. Thus, for the vacuum probability

Pvac(t) = | ⟨vac|U(t) |vac⟩ |2 = exp(−ωV t) (25)

with

ω =
q2E2

4π3

∞∑
n=1

1

n2 exp

[
−nπm2

qE

]
(26)

Using the polylogarithm function

Lis(z) =
∞∑
k=1

zk

ks
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we also get the nice expression

ω =
(qE)2

4π3 Li2

(
exp

(
−πm2

qE

))
(27)

Now, we can discretize the probability in the following way

Pvac = e−
∫
d
4
xω(x) = lim

∆v→0

∞∏
i=1

e−ω(xi)∆vi =
∞∏
i=1

(1− ω(xi)∆vi) (28)

Now, we can understand why ω is not the rate of pairs created since (7),(8)
gave the right answer for the rate ( in the case of d=3+1 QED)

Γ =
(qE)2

4π3 exp

[
−πm2

qE

]
=

⟨N⟩
V T

̸= ω (29)

Indeed, the proper and accurate interpretation of Schwinger’s formula is that
it provides the relative probability of pair production, and the rate Γ can be
obtained as the first term in the series for ω. Higher order terms in the
expansion give the rate of multiple pairs creation. Cohen showed this too [5]
in a simple toy model: d=1+1 QED. He obtained:

ω1+1QED
ferm =

qE

2π

∞∑
n=1

1

n
exp

[
−nπm2

qE

]
= −qE

2π
log

(
1− e−

πm
2

qE

)
(30)

Hence, we see that the rate is

Γ1+1QED =
⟨N⟩
LT

=
qE

2π
exp

[
−πm2

qE

]
̸= ω1+1QED (31)

In summary, Schwinger’s formula gives the relative probability to vacuum
that a pair be created per unit of volume and time ( that is given by ω) and
the average number of pairs produced per unit of volume and time( that is
given by the rate Γ). This two concepts are not the same in general and they
can be confused if we are careless. See e.g. [7, 8, 9] for a rigurous proof.

4 Generalizations

The Schwinger’s mechanism is a completely general non-perturbative effect
of gauge theories. It can be calculated for both scalar and fermion fields in
QED in any dimension of spacetime [10, 11]. In this section, we first review
the main formulae of [10] and then we will show the general formulae due
to its great interest and beautiful mathematical expression. Note that the
field is generally not homogeneous in L but it is studied the case where E is
constant as a particular case.
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4.1 Spinor QED

If d=2+1, we have following [10]

L2+1QED
f (E) =

q2e−iπ/4
(
∂∥E

)2
4 (4π|qE|)3/2

∫ ∞

0

dω
1√
ω
e−

im
2
ω

|qE|
d3

dω3 (ω cothω) (32)

Mimicking the Schwinger’s strategy, we use residues to evaluate the above
integral to extract the imaginary part of the effective lagrangian for constant
electric fields. In this case,

ℑ(L2+1QED
f (E)) =

|qE|3/2

4π2

∞∑
n=1

1

n3/2
exp

(
−πm2n

qE

)
(33)

ℑ(L2+1QED
f (E)) =

|qE|3/2

4π2 Li3/2

(
exp

[
−πm2

|qE|

])
(34)

and where we have defined ∂∥E = ∂0E∂0E − ∂1E∂1E and again we finally
wrote the result in terms of the polylogarithm Lis(z). If now we write the
resulting expression for fourdimensional d = 3+1 QED, we get similarly the
previous result by Schwinger:

ℑ(L3+1QED
f (E)) = −

iq2
(
∂∥E

)2
(8π)2|qE|

∫ ∞

0

dω

ω
e−

im
2
ω

|qE|
d3

dω3 (ω cothω) (35)

and for constant electric field, we obtain the result

ℑ(L3+1QED
f (E)) =

(qE)2

8π3

∞∑
n=1

1

n2 e
−m

2
πn

|qE| (36)

ℑ(L3+1QED
f (E)) =

(qE)2

8π3 Li2

(
exp

[
−πm2

|qE|

])
(37)

4.2 Bosonic QED

In d=2+1 dimensions of spacetime, we obtain the following effective la-
grangian

ℑ(LQED
b,2+1d(E)) = −

e−iπ/4q2
(
∂∥E

)2
16π|qE|3/2

∫ ∞

0

dω

ω
e−

im
2
ω

|qE|

(
d3

dω3 +
d

dω

)
ω

sinhω
(38)
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and for constand field this turns to be

ℑ(LQED
b,2+1d(E)) =

|qE|3/2

8π2

∞∑
n=1

(−1)n+1

n3/2
exp

[
−πm2n

|qE|

]
(39)

ℑ(LQED
b,2+1d(E)) = −|qE|3/2

8π2 Li3/2

(
− exp

[
−πm2

|qE|

])
(40)

By the other hand, if we are in a (3+1)d spacetime, the equivalent expressions
are

ℑ(LQED
b,3+1d(E)) =

iq2
(
∂∥E

)2
2 (8π)2 |qE|

∫ ∞

0

dω

ω
e−

im
2
ω

|qE|

(
d3

dω3 +
d

dω

)
ω

sinhω
(41)

and

ℑ(LQED
b,3+1d(E)) =

(qE)2

16π3

∞∑
n=1

(−1)n+1

n2 exp

[
−πm2n

|qE|

]
(42)

ℑ(LQED
b,3+1d(E)) = −(qE)2

16π3 Li2

(
− exp

[
−πm2

|qE|

])
(43)

4.3 Schwinger effect in higher dimensional QED

The previous results can be generalized to higher dimensional QED. The
main formulae were given in previous works, e.g. in [11]. There, the authors
related the single and multiple pair production of bosons and fermions with
the single and multiple instantons in higher dimensional non-perturbative
QED at finite temperature. In (d+1) Minkovski spacetime ( D = d+ 1) we
obtain for bosons ( where the spin is denoted by s), with ω = 2ℑ(Leff ) as
before, and the volume splitting V = V∥V⊥, such as

∫
dω = V∥qE. Therefore,

for bosons in higher dimensions, we deduce that

ωb,d+1 =
(2s+ 1)V⊥

V

∫
dω

(2π)d

∫
dk⃗d−1

⊥

∞∑
n=1

(−1)n+1

n
e−

k⃗
2
⊥πn

qE e−
m

2
πn

qE (44)

and after making the integration we get

ωb,d+1(E) =
(2s+ 1)

(2π)d

∞∑
n=1

(−1)n+1

(
qE

n

) d+1
2

(
exp

[
−πm2n

qE

])
(45)

ωb,d+1(E) = −(2s+ 1) |qE|
d+1
2

(2π)d
Li d+1

2

(
− exp

[
−πm2

|qE|

])
(46)
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For fermions in higher dimensional QED, using a d+1 Minkovski spacetime,
we algo get

ωf,d+1 =
(2s+ 1)V⊥

V

∫
dω

(2π)d

∫
dk⃗d−1

⊥

∞∑
n=1

1

n
e−

k⃗
2
⊥πn

qE e−
m

2
πn

qE (47)

and

ωf,d+1(E) =
(2s+ 1)

(2π)d

∞∑
n=1

(
qE

n

) d+1
2

(
exp

[
−πm2n

qE

])
(48)

ωf,d+1(E) =
(2s+ 1) |qE|

d+1
2

(2π)d
Li d+1

2

(
exp

[
−πm2

|qE|

])
(49)

The mathematical beauty and elegance of equations is astonishing, specially
(48) and (51). Other generalizations, in particular with simultaneous electric

and magnetic strong fields (E⃗, B⃗) do exist ( see, e.g., [12]), but we let this
fascinating topic with the shocking polylogarithmic expressions above. Only
a final important remark: for strong electric fields E, ωd exceed the given
production rate Γd by a factor of the order ζ(d+1

2
), as large as ζ(2) ∼ 1.64 in

d=3, D=4=3+1.

5 Experimental searches

In the nice talk [13], it was explained the main problems related with the
observation of Schwinger’s effect:

• Available experimental electric fields E⃗ are too small compared with

respect to the critical field Ec =
m2c3

qeℏ
.

• Different experimental set-ups involving strong electric fields in laser
pulses (E⃗ = E⃗(t)), at last, depend on complicated dynamics.

• Electron mass put a strong bound on the critical field since it is very
small ( the key point to understand why Schwinger effect is hard to
observe). Then the exponential suppression of both ω and Γ makes the
physical observation very challenging.

However, some interesting and forthcoming projects with laser facilities like
ELI (Extreme Light Infrastructure) will try to manage its realization. In the
same talk, previously mentioned, Cohen et al. proposed to use an analogue
system in condensed matter: the well-known graphene. The reason for this
proposal are the following:
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• Charged massless ( or almost massless) fermions imply the exponential
approaches to the unit and the effect would be easier to observe due to
the exponential absence.

• Graphene systems, dut to its importance and present activity, provide a
fermioni model of quasiparticles in low dimensional, e.g. 2+1d, systems
whose spectrum is very similar to the relativistic massless ( or light)
charged fermions. In fact, in a potential with hexagonal symmetry ( a
honneycomb lattice) we obtain the spectrum:

ε2 = c̃2
(
∆p2x +∆p2y

)
+ . . . (50)

so heuristically adjusting the dimensional factors, we could get the
Schwinger rate:

Γ2+1
graphene = f

(qE)3/2

4π2 ζ

(
3

2

)
= f

(qE)3/2

4π2

∞∑
n=1

e−
mπ

2
n

qE

n3/2
(51)

Therefore, if we insert dimensions, for m = 0, f = 4 = 2(2(1/2) + 1),
we easily obtain

Γ2+1
graphene =

(qE)3/2

π2ℏc̃1/2
ζ

(
3

2

)
(52)

where ζ(3
2
) ≈ 2.612.

6 Summary and conclusions

We have studied and reviewed the Schwinger effect for bosons and fermions
from different viewpoints. Our calculations were done by a heuristical path
and a formal approach. We revised the Schwinger’s original paper and un-
derstood

2ℑ
(
Leff

)
=


−trp(1− np), for fermions

+trp(1 + np), for bosons

trp(np), for Maxwell-Boltzmann particles

as a series that gives us the number of pairs created ( as long as np << 1)
and it is independent of the statistics. Higher terms can be understood as a
coherent production of multiple pairs in a given spacetime volumen for any
dimension. The origin of this effect is a non-perturbative phenomenon, and
hence, it can not be reproduced by any perturbative analysis. Indeed, the
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Euler-Heisenberg lagrangian and its generalizations is in general a divergent
series from which we can make a Borel sum so that if

f(−g) =
∞∑
n=0

n!gn =
1

g

∫ ∞

0

dt
e−t/g

1− t
(53)

the imaginary part of f(−g), the Borel sum, has a pole with residue

Res(f) = −1

g
e−1/g (54)

and then
ℑ(f(−g)) =

π

g
e−1/g (55)

is a non analytical function of g. This effect does not appear in perturbation
theory. We have also used some topics of QFT in curved spacetime in our
formal approach and we have written the final expressions for the Schwinger
effect in any dimension with the aid of polylogarithms.

The experimental searches for this important mechanism are being pur-
sued yet and we have presented some novel and recent remarks concerning
the measurment of the masses of the pairs and the experimental searches
in low dimensional systemas such as graphene. It is interesting that there
could be other unknown ways to test the effect. One can imagine that in the
Universe can be astrophysical objects or phenomena that could be able to
produce the large electric fields that are required to produce this non-trivial
SM effect. But, as far as we know, that search has not been done. Likely,
more interplay between theory ( likely more condensed matter physics and
astrophysics) and experimental sides will be necessary in order to confirm
the non-perturbative predictions of QED.
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